S=input('Enter incoming energy constant S (default is 100x10^{15}): '); emis=input('Enter emissivity: '); if isempty(S), S=1e17; end Esc=1e15; T=220:310; Etop=S; c=3e7; A=zeros(size(T)); %A(T<280)=0.05*(280-T(T<280)); %A(T<=270)=0.5; Ein=Etop*(1-A); if isempty(emis) emisf=input('Enter scaling for dependence of emissivity on T: '); emissc=min(ones(size(T)),exp(-(T-220).^2/(1e4*emisf))); emis=1; else emissc=1; end emis=emis*ones(size(T)); EMIS=emissc.*emis; Eout=c*EMIS.*T.^4; Eoutn=c*T.^4; figure(1), clf subplot(2,1,1), box on, grid on, hold on pl1=plot(T,Ein/Esc,'b'); pl2=plot(T,Eout/Esc,'r'); pl3=plot(T,Eoutn/Esc,'r--'); set(pl1,'linewidth',2), set(pl2,'linewidth',2) legend('E_{in}','E_{out}','E_{out} if emissivity were 1','Location','Northwest') xlabel('T (K)') ylabel('Energy flux (PW; 1 PW = 10^{15} W)') axis([min(T) max(T) 0 250]) subplot(2,1,2), box on, grid on, hold on plot(T,EMIS,'k',T,ones(size(T)),'k--'); xlabel('T (K)') ylabel('Emissivity') axis([min(T) max(T) 0 1.1])