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1.1 Example: Heat budget of a sphere in a vacuum
If there is incoming shortwave radiation from a distant point source, we can write

F C
in = πr 2(1 − a)I,

where I is incoming solar radiation (W m−2 ),a is albedo and r is the radius of the sphere
(m). We assume that there is black-body outgoing radiation from the sphere:

F C
out = 4πr 2σT 4,

where T is temperature (K) and σ is the Stefan-Boltzmann constant (W m− 2 K− 4).
QUESTION (1): Write down the equation for the heat budget of sphere.
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1 Budgets
A budget is a quantification of the net fluxes of a property into and out of a reservoir, which must be
able to explain the net change in that property in the reservoir (e.g. heat in the atmosphere/ocean/
Earth). In general,

∂
∂t

CdV = Σ n
i =1 F C

i , (1)

where C is a conservative property of  interest, and  we are considering fluxes of C  ( FC) into the
reservoir. (fluxes out of  the reservoir can be represented as  negative fluxes into  the reservoir).
Note that units of Fi

C are the units of C multiplied by the units of volume flux (m3 s-1) This equation
can be easier to use if rewritten:

VĊ = F C
in − F C

out , (2)

where C is now the mean property value in the reservoir, and we have used:

Ċ =
∂C
∂t

,

F C
in = Σ n

i =1 F C
i , F C

i > 0
F C

out =− Σ n
i =1 F C

i , F C
i < 0

and assumed that the volume of the reservoir does not change in time. Note that Fin and Fout can
include creation or destruction of the property within the reservoir (e.g. radioactive decay).
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ANSWER (1)

V Ċ = πr2(1 − a)I − 4πr2σT4.

Here, the property C is heat-content-per-unit-volume, a rather strange property. We’d much rather
use temperatureT, which is related to heat content by:

V
dC
dT

= V ρcp,

where ρ is density and cp is specific heat capacity. Inserting into Eqn (??   ) yields

V ρcpṪ = πr2(1 − a)I − 4πr2σT4. (3)

2.1 Example 1: Outgoing long-wave radiation
QUESTION (2a): Consider Eqn (3). Is the outgoing long-wave radiation term a positive
or a negative feedback?
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2 Positive and negative feedbacks
A system has  feedbacks if any flux of  property C into the  reservoir, Fi

C,  is a function of C (this
includes fluxes out of the system and  extends to internal generation terms.)  The responce of Fi

C 

to C need not be immediate; there is feedback even if C only affects Fi
C indirectly. If Fi

C  increases
as C  increases, this  is a  positive feedback. If  Fi

C   decreases as C  increases,  this is a negative 
feedback. That is:    

∂F C
i

∂C
< 0 → Negative feedback

∂F C
i

∂C
> 0 → Positive feedback

(4)

    Negative Fi
C  was reinterpreted as a positive flux out of the system in Equation  (2). In this view

positive feedback  exists when a flux of C into the reservoir increases as C  increases, or when a 
flux of C  out of the reservoir decreases as C  increases. Similarly, negative  feedback exits when
a flux of C  into the reservoir  decreases as C  increases, or  when a flux of C  out of the reservoir
increases as C increases. 
 



ANSWER (2a)
The  last  term − 4πr2 σT4  indicates a flux of “temperature” (strictly heat) out of the

reservoir that increases as temperature T increases. This is a negative feedback, because
the increase in temperature causes a negative change in the temperature tendency Ṫ (i.e. it
tends to cause temperature to decrease, in opposition to the original increase).

2.2 Example 2: Temperature–albedo feedback
Consider Eqn (3), again, but now suppose that albedo a is a function of temperature, T and
that this function takes the form:

a = 0 .56, T ≤ 271
a = 0 .06 + 0.25(273 −T ) = 68 .31− 0.25T, 271< T < 273

a = 0 .06, T ≥ 273

(Such a change in albedo might be caused, for example,  by a linear increase change of an
ocean-covered sphere from ice-covered to ice-free as  temperature increases. Strictly, since
ice formation releases heat, and ice melting consumes heat,  this would require an extra term
in the heat budget, but we will assume that  this  is negligible.)  We can now rewrite Eqn (3):

V ρcpṪ = 0 .44πr2I − 4πr2σT4, T ≤ 271

V ρcpṪ = − 67.31πr2I + 0 .25πr2IT − 4πr2σT4, 271< T < 273

V ρcpṪ = 0 .94πr2I − 4πr2σT4. T ≥ 273

(5)

QUESTION (2b): Has this introduced any further feedbacks to the system? If so, are 
they positive or negative feedbacks?
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ANSWER (2b)
Within the high and low  temperature domains, the albedo –  and therefore the absorbed

solar radiation –  is independent of T , so there are no new feedbacks. However the sec-
ond term in (5) in the intermediate  temperature  condition, +0.. 25πr 2IT indicates a flux
of temperature into the reservoir that increases as temperature T increases. (This is be-
cause albedo decreases as temperature increases, so that a greater proportion of incoming
shortwave radiation is absorbed by the reservoir.)  This is a positive feedback, because the
increase in temperature causes a positive change in the temperature tendency Ṫ (i.e. it tends
to cause temperature to increase further, in addition to the original increase).

To reduce the notation, we now rewrite (5):

V ρcpṪ = F1c − k2T4, T ≤ 271

V ρcpṪ = F1m + k1T − k2T4, 271< T < 273

V ρcpṪ = F1h − k2T4. T ≥ 273

(6)

where we have defined

F1c = 0 .44πr2I, F 1m = − 67.31πr2I, F 1h = 0 .94 πr2I,
k1 = 0 .25πr2I, k 2 = 4πr2σ

3 System equilibria
“Equilibrium” in system analysis means that the properties of a system are not  changing
in time  (c.f. equilibrium in mechanics, meaning an object’s velocity is not changing).  This
means that any term containing a time derivative must be zero. For the generalised system
with a conservative quantity, given in Eqn (2), the criterion for equilibrium is

F C
in = F C

out . (7)

The fluxes out of the reservoir must equal the fluxes into the reservoir.

3.1 Example: Heat budget of a sphere
QUESTION (3): Rewrite Eqn (5), assuming that the system is at equilibrium.
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ANSWER (3)
At equilibrium, Ṫ is zero, and (5) becomes

F1c − k2T4
eq = 0 , Teq ≤ 271

F1m + k1Teq − k2T4
eq = 0 , 271< T eq < 273

F1h − k2T4
eq = 0 . Teq ≥ 273

(8)

where equilibrium temperatures are denoted byTeq  Equilibria in the system may be  found
be solving Eqn (8) for Teq. At present, the number of equilibria in the low, mid, and  high
domains of T is unknown.

4 Linear stability of an equilibrium in a one variable system

The most useful test for linear stability of an equilibrium in a system is that a system,
if perturbed from equilibrium by a  small amount, will return to equilibrium . For a one-
variable system,  this is  equivalent to  stating  that  negative feedbacks must  outweigh 
positive feedbacks at equilibrium,  in order for the equilibrium to be stable.  This criterion
(the Lyapunov criterion) may be expressed:

∂(F C
in − F C

out )
∂C

< 0, → Stable equilibrium

∂(F C
in − F C

out )
∂C

= 0 , → Critically stable equilibrium

∂(F C
in − F C

out )
∂C

> 0, → Unstable equilibrium (also metastable equilibrium)

(9)

     However, we have already seen that, at equilibrium,F C
in − F C

out = 0 (see Eqn 7).
ether with Eqn (9), this means that in a stable system, a positive perturbation in C must
lead to a negative value of F C

in − F C
out (similarly a negative perturbation in C must lead to

a positive value of F C
in − F C

out ).

4.1 Example: Heat budget of a sphere
Consider a small perturbation from equilibrium. We write

T = Teq + T'

and
T4 = T4

eq + 4T3
eqT' + 6T2

eqT' 2 + 4TeqT' 3 + T' 4

Noting that T' << Teq, we ignore terms containing T' 2 or smaller terms:

lim
T' →0

T4 = T4
eq + 4T3

eqT' ,

QUESTION (4a): Substitute this approximation into Eqn (5).
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ANSWER (4a)

V ρcpṪ = F1c − k2T4
eq − 4k2T3

eqT' , Teq < 271

V ρcpṪ = F1m + k1Teq + k1T' − k2T4
eq − 4k2T3

eqT' , 271< T eq < 273

V ρcpṪ = F1h − k2T4
eq − 4k2T3

eqT' . Teq > 273

(10)

QUESTION (4b): Many of the terms appearing in (10) also appear in the equation
for the equilibrium of the system (Eq 8). Only the perturbation terms and term containing
Ṫ do not. Therefore simultaneously solving these two equations seems a good idea.

6

Do so



ANSWER (4b)

V ρcpṪ = − 4k2T3
eqT' , Teq < 271 orTeq > 273

V ρcpṪ = ( k1 − 4k2T3
eq)T' , 271< T eq < 273

(11)

QUESTION  (4c): Look at the results you have obtained. Would an equilibrium
in the high temperature domain be stable? Would an  equilibrium in the intermediate
temperature domain be stable? Would an equilibrium in the low temperature domain be
stable?
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ANSWER (4c)
Because we know  that− 4k2T 3

eq must be negative, we know that any equilibrium in the
domain T < 271 or the domain T >273 must  be stable. Mechanistically, we can say that
any small increase in temperature  will lead to  an increase in outgoing radiation, which will
return the system to the original equilibrium. Similarly,  a small decrease in temperature
will lead to a decrease  in outgoing radiation,  which will return the system to equilibrium.
The perturbation will decay.

In the domain 271< T < 273 , the result is unclear. If 4 k 2T3
eq > k1 , the negative long-

wave radiation feedback is stronger than the positive albedo feedback, and the system is
stable. However, if k1 > 4k2T3

eq , the positive albedo feedback is stronger than the negative
long-wave radiation feedback, and the system is unstable. Therefore, a small increase in
temperature will lead to a decrease in albedo,  which will move the system further away
from equilibrium (i.e. warm further).  Similarly, a  small decrease in temperature will lead
to an increase in albedo,  which will move the system further away from equilibrium  (i.e.
cool further). The perturbation will grow.

5 Evolution of a one-variable system perturbed from equi-
librium

The evolution of a one-variable system perturbed from equilibrium by a small  amount can,
in general, be written

Ċ = λC' , (12)

(see Eqn 11 for an example). If we rewrite this

∂C' 
∂t

= λC' ,

it is straightforward to see that the equation can be rearranged:

1
C' 

dC' = λdt

and integrated:
ln (C' ) + ln (C − 1

0 ) = λt,

whereln (C− 1
0 ) is an arbitrary constant of integration. This can be rearranged:

ln (C− 1
0 C' ) = λt,

and finally
C' = C0e λt . (13)

We see that if the growth constant λ is positive, we have exponential growth, and if λ is
negative, we have exponential decay. This confirms the result that negative feedbacks are
required for an equilibrium to be stable.  However, CARE IS NEEDED. Sometimes, even
within this course, λ (or k or other symbol) is used as a decay constant rather than a growth
constant  (Ċ = − λC' instead of Ċ = λC' ), in which case positive values would indicate
decay and negative values would indicate growth. However,  it is always possible to tell
how it is used from the equation and/or physical description of the system.

λ (dimension of time −1 ) gives the rate at which perturbations decay or grow; 1/λ is the
e - folding timescale.
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5.1 Example: Heat budget of a sphere
QUESTION (5a): Write the equation for the evolution of temperature of our sphere,
perturbed from equilibrium by a small amount, using Eqn (11).

QUESTION (5b): In the intermediate domain, under what condition would the equi-
librium be critically stable, and the evolution equation suggest that the perturbation will
neither decay nor grow.
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ANSWER (5a)

T' = T0exp
− 4k2T3

eq

V ρcp
t , Teq < 271 orTeq > 273

T' = T0exp
k1 − 4k2T3

eq

V ρcp
t , 271< T eq < 273

(14)

We obtain exponential decay around any equilibria in the domain T < 271 or the domain T
> 273 , but exponential growth in the domain 271< T < 273if k1 > 4k2T3

eq . The greater
the volume of the reservoir, the more slowly T' decays or grows.

ANSWER (5b)
The perturbation neither decays nor grows, and T' = T0, if the growth constant is zero,

i.e.:
T3

eq = k1

4k2

In practice, in this scenario, one should examine the largest term that was neglected in
Part 4 (the term containing T' 2 ) to determine whether a perturbation would decay or grow
in this scenario. However, this enters the realm of non-linear stability, which is beyond the
scope of this course.
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