
SOES 6006: Climate Dynamics 
Worksheet for Workshop Session on 

 the Basic Mathematics of Linear Dynamical Systems 
with answers 

Important Notes 
A. You should ideally be able to work on quantitative problems using any system of 

notation and any system of units you wish (or are asked to use). While some 
systems of notation and units (e.g. SI units) are commonly used and are more or 
less standard, this is only for convenience and not of great importance. In this 
course you will encounter inconsistencies of notation and unfamiliar and peculiar 
units. We make no apology for this. That’s the way it is, in real life, and one must 
learn to live with it… 

B. When working on quantitative problems, you should work in symbolic 
notation to the maximum extent possible (we didn't in the previous exercise,
but that was only to introduce the concepts), for as long as possible, and only 
substitute numerical values at the very end. In that way you will (a) obtain a 
generally applicable result; (b) be able to profit from any cancellation and 
simplification which may be possible; (c) be able to check for symmetry and 
dimensional consistency, and so trap and avoid many errors…  

1) Derive the first order linear differential equation for the evolution of the concentration 
C of some substance, in a reservoir of volume V, if a fraction  of the inventory is lost 
per unit time, and the substance is generated by a source term S units per unit volume 
per unit time… 

dC
dt

+ C = S

Why does the volume of the reservoir not appear in this equation ? 

2) If S is zero, the equation is said to be homogeneous (if you don’t know why, please 
ask). Does the homogeneous equation have a steady-state solution ? [Hint, set dC/dt to 
zero, and solve for C]. If so, what is it ? 

C = 0 

3) Does the inhomogeneous equation (with S > 0) have a steady-state solution (assuming 
that S is constant w.r.t. time) ? If so, call this steady-state solution CS ... What is it ? 

CS = S/



4) Write down the differential equation for the transient difference C’ between the general 
solution C and the steady-state solution CS  {i.e. for C’ =C – CS }.  [Note: The   here 
just denotes a difference, not a differential operator..] [Hint: rewrite this last 
expression to give an expression for C, substitute this in the differential equation, and 
collect terms in C’ and simplify as far as possible]

dC
dt

+ C = S  , but C =CS +C  , so  dC
dt

+ C = S CS = 0, and so dC
dt

+ C = 0

In general the equation for the transient solution is thus always homogeneous. 

5) This difference C’ , between the general solution C and the steady-state solution C0 , 
describes the transient solution which may occur as a result of a perturbation which 
takes the system away from the steady-state, or from starting at a level different from 
the steady-state, as a result of the initial conditions.
 Write down the most general solution for C’ . 

[Note: solutions to differential equations cannot usually be derived by a step-by-step 
process (integration is an inverse process). One normally has to proceed by recognising 
the general form, and using trial & error, and/or by looking them up in books where the 
results obtained in that way by clever people are recorded. You need to be able to 
recognise the simple standard forms of differential equations and their solutions. This one 
has an exponential solution.] Hint: include any necessary constants of integration, so that 
you will be able to fit any necessary boundary or initial conditions…

C = Aexp( t) + B

6) Remembering that C’ is the solution of the homogeneous equation for a transient, what 
is its steady-state solution (when t ) ?

C’=0

7) Can you use that result to eliminate or determine any constants of integration ?

Yes, it determines that B=0

8) What, therefore, is actually the general solution for C’ ?

C = Aexp( t)

9) What, therefore, is the general solution for C  itself ?

C =CS + Aexp( t)



10) If the system starts with the initial condition C = C0  when t = 0, use this initial 
condition to determine  A and hence  derive the full specific solution for C  

C =CS + Aexp( t) , but for t = 0, C =C 0 ,  and exp( t) =1, so C 0 =CS + A ,  and so A = (C 0 CS )

thus in this case C =CS + (C 0 CS )exp( t)

Note that this form of the solution [i.e. solution =final + (initial – final)  transient] 
where the transient solution tends to zero eventually, is generally applicable for well-
behaved first-order (and other) initial value problems, so it can be written down 
immediately, and there is no need to solve it all over again afresh every time such a 
problem is encountered... Note also that  defines the rate at which the transient solution 
decays, and so  = 1/  is the characteristic response time for the approach of the system 
to equilibrium.

Sketch the solutions for both positive and negative perturbations from the steady-state

11) Is the steady-state solution stable ?

The solution is stable if the result of any perturbation gets progressively smaller (rather 
than bigger) with time, i.e. if  transient term tends to zero as t , so  

a) For >0

Yes

b) For <0

No

12) Another useful way to check for stability is to try a trial solution of the form ei t in 
the differential equation for the transient term, i.e. in the equation for the deviation 
from steady state. 

Note that ei t  is the standard complex number form for an oscillatory solution, 
since ei t = cos( t) + i sin( t)  (often known as de Moivre’s theorem) where i is the 
square root of  –1,  and only the real part of this complex expression is taken to 
correspond to reality. [If you don’t understand complex numbers, please ask…]  
(in radians per unit time) here denotes the angular frequency  = 2 f where f is the 
ordinary frequency (in cycles per unit time, e.g. Hz). It is used mainly just for 
convenience (to avoid writing 2 f over & over again).
NB also that for this trial solution we always have dC /dt= i C …



Try this trial solution for the equation for C’ and comment on the result…

In this case we find that dC /dt= i C = C so that = i  and the solution is 
therefore the decaying exponential exp( t) , which we knew already so it’s not very 
interesting. However in more realistic and complicated cases the result of this 
technique can be very useful, especially when there is time-dependent forcing of the 
source and/or boundary terms…

13) Consider the case where the system is subjected to periodic forcing (e.g. seasonal, 
Milankovitch (orbital) etc) via the source term, such that S = S0 + Fe i t, say. Show that 
we now have the perturbation equation
dC
dt

+ C = Fe i t , and use a trial solution C = Aei t  to find an expression for  the system 

Gain G ( ) which expresses the amplitude A of the system response relative to the 
forcing F,  i.e. G ( ) =A/F, as a function of  …

If we insert C = Aei t and remember that dC /dt= i C we obtain 
i Aei t + Aei t = Fe i t , so (i + )A = F , and G ( ) = A /F =1/( + i )

14) Sketch the magnitude (modulus) G ( )  as a function of  . Specifically, how does 
it behave w.r.t. , and what values does it have…

a) For low frequency perturbations, i.e. <<  ?

G ( ) 1/ , which is a constant, 

NB: the low frequency response (gain) is large if  is small, and vice versa, so that  
systems with a slow response rate (i.e. a long response time) are very sensitive (in the long 
term…) 

b) For high frequency perturbations, i.e. >>  ?

G ( ) 1/i , so G ( ) 1/ , which is inversely proportional to , and therefore not 
only small (less than the low frequency “DC” response) because >> , but also 
progressively smaller and smaller for higher frequencies.

This characteristic type of response is called a low-pass filter response, because low 
frequency perturbations are “passed” through the system, by comparison with high 
frequency perturbations which are progressively attenuated. High-pass filter responses are 



also possible (as are higher order responses with sharper cut-offs, in more complicated 
systems, and many other interesting things…).

[Note for mathematicians: this is just a quick & easy way of finding the frequency 
response of a system. This can be done much more generally and rigorously using 
Fourier, Laplace or Z-transforms. In general the frequency response of a linear system is 
the Fourier transform of its impulse response, i.e. its response to a perturbation in the 
form of a Dirac delta-function]. 

J.G. Shepherd (January 2006) - modi�ed K. Oliver (February 2010)
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