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Overview : Lectures 4,5

1) Basics
 The global energy balance
o Zero-dimensional (globally-averaged)
Energy Balance Models (EBMSs)
2) Introducing latitudinal effects
e 1D (meridional) EBMs
 Energy transport

Themes (Lecture 5):

Some spherical geometry, for ISWR as function of latitude
A (slightly) more sophisticated OLWR formula

Simplest representation of ocean/atmosphere heat transport
Modelling zonally-averaged surface temperature

The ice-albedo feedback & hysteresis



1) Zonal radiation imbalance
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Distribution of absorbed solar and emited infrared radiation with latitude
Tropics = energy surplus
High Latitudes = deficit

Schematic, for precise diagram go to: Kump, L.R., Arthur, M.A., Patzkowsky, M.E., Gibbs, M.T., Pinkus, D.S., Sheehan, P.M., (1999) G}@@
A weathering hypothesis for glaciation at high atmospheric pCO2 in the late Ordovician. Palaeoclimatol.Palaeoecol. Palaeogeogr. v, 152, p. 173-187 @



2) Meridional heat transport & meridional
temperature gradient
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Surface T(K) vs. sine of latitude for the case of no transport,

infinite transport, and earth. T is zonally averaged.

Reproduced by permission of American Geophysical Union: North, G.R., Cahalan, R.F., Coakley, J.A, jr. Energy Balance Climate Models. Rev. Geopys. Space Phys, v.
19, no. 1, p. 91-121. February 1981. Copyright [1981] American Geophysical Union.



3) The Faint Young Sun Paradox

The Faint Young Sun Paradox
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Even though the Sun was about 30% dimmer than it is now,

the temperature on Earth has been more or less stable.

= |1-D EBMs

How can

help
explain
liquid
water on
the early
Earth?

Courtesy of University of Oregon @ G)@@)
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4) Snowball Earth Episodes
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Why were these episodes so long?

Diagrams courtesy of Snowball Earth (Paul F Hoffmann). @ G}@@



5) Meridional heat transport in the
Ocean & Atmosphere

Courtesy of Center for Multiscale Modelling of Atmospheric Processes Courtesy of LDEO

%DTHE GREAT OCEAN CONVEYOR

Mid-latitude cyclones as viewed
from space above the South Pole.
(http://mwvww.cmmap.org/images/learn/climate/ferrel.jpg)

The Global Ocean Conveyor Belt

What is the difference between the
transport represented in these two
Images, and how might it matter?

@080



Meridional Non-uniformity

 Insolation varies with latitude
- allowing for the effect of obliquity

J Geometrical effects
- projected and actual areas of latitude bands

 Pole-Equator temperature differences

- moderated (reduced) by atmospheric & oceanic
transports of heat (and also water, etc...)

- S0 need to include advection & diffusion , i.e.
transport by mean circulation & eddies (recall
end of lecture 3)

d We will build a more complete 1-D EBM ...



1D (meridional) EBMs

 Incoming SW solar radiation
- varies as a function of latitude
- and of albedo (may be a function of temperature...)

 Outgoing LW infra-red radiation
- now a function of local (not global) surface temperature

 Heat transport, by mixing (and maybe advection)
- needs to be parameterized

1 Heat capacity of land/sea surface (mixed layer?)
- needed for time-dependent calculations only

1 See review by North et al (1981)

- North GR, Cahalan RF & Coakley JA, Rev Geophys & Space
Physics, 19, 91-121 (1981)



ISWR at different latitudes

Angle of incidence affects the distribution of energy over
the surface area (and also reflectivity of surface)

Present-day obliquity

Light
source
Sun
-~ rays
Light
source
- > South

University of Southampton @ OSE



Projected Areas (Zones) for ISWR

Within latitude bands (9 — A0/ 2) and (6’ + AO] 2)

projected area..
dA, =2RcosdRdOcosl = ‘ 2R?cos® 0dé ‘

dA, = R®(1+cos26)dé
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— 7 R?/ 2 for a hemisphere : OK



Obliquity & annual-mean insolation

e For zero obliquity, ISWR varies as cos?6
* But non-zero Angle of Obliquity strongly alters the variation
of annual-mean ISWR with latitude:
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Fig. 9. Average annual insolation as a function of latitude for
various values of the obliquity. The insolation is normalized to the
solar constant at 1.52 AU.

Reproduced by permission of American Geophysical Union: Ward, W.R., Climatic variations
on Mars, 1. Astronomical Theory of Isolation. Journal of Geophysical Research v 79, no 24.
p, 3375. 20 August 1974. Copyright [1974] American Geophysical Union



Annual-mean ISWR for present obliquity

d The annual-mean of seasonally-varying insolation,
as a function of latitude, is complicated!

1 But from observations (for present-day obliquity):
S(sinB) = S, {1 - 0.477 P,(sinB)} |(by G.R.North)

where P,(x) = (3x? -1)/2
(a second Legendre polynomial)

d From which:
S(Eq) = 340 x {1-(0.477x(-0.5))} = 340 x 1.239 = 421 Wm~?
vs. 433 W m-2for zero obliquity
S(pole) = 340 x {1-(0.477 x (-1))} = 340 x 0.523 = 178 Wm??
>> (0 for zero obliquity

1 So the main effect of obliquity is polar warming



OLWR re-visited

 Budyko’s Linear Approximation for OLWR:
e F~ 204+217T, W m-2

 already (implicitly) incorporates the greenhouse
effect due to water vapour

» good approximation to data for 0 < T, <30 °C
e but may be poor if extrapolated outside that range

A better approximation is the logistic form:
F~ 0.9 x 6 (T+273)* x [1-logistic{(T,-50)/100}] |

 allows for saturation of F (asymptoting to maximum
of ~320 Wm-2) due to absorption by water vapour

 recall last lecture (L4)



Outgoing Long-Wave Radiation and
the Water Vapour Greenhouse Effect
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John Shepherd, University of Southampton @ G}@@



1) Zonal radiation imbalance (explained)

Present-Day
Obliquity &
projected
S area effect

Net radiation

deficit ensure that
considerably
more ISWR
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Distribution of absorbed solar and emited infrared radiation with latitude I OW I a‘t | t u d eS -
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Schematic, for precise diagram go to: Kump, L.R., Arthur, M.A., Patzkowsky, M.E., Gibbs, M.T., Pinkus, D.S., Sheehan, P.M., (1999) l@ @@@

A weathering hypothesis for glaciation at high atmospheric pCO2 in the late Ordovician. Palaeoclimatol.Palaeoecol. Palaeogeogr. v, 152, p. 173-187
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Atmospheric & Oceanic heat transport

d Latent & sensible heat transport
e by advection (mean flow)
e and/or by mixing (eddies), due to baroclinic instability

1 Parameterize most simply (Budyko 1969):
Q =K' (TS B Tbar)

- relaxation of local temperature, 7, to global mean temperature

 useful for a simplest 1-D EBM, but results are peculiar ...



Heat Balance Equation - general form

 Evolution of temperature field (1D, meridional)

c@TZt( Q)ZA(H)[(l_ 0SO)-F)l55

Net ISWR OLWR Meridional
heating divergence
of transport

C = heat capacity;

A(&’) = area of zone centred on latitude &;

() = advective-diffusive heat transport



One-dimensional (meridional)
EBM schematic
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(Sketch courtesy John Shepherd)

N.B. mixing between boxes (double-headed arrows) plus
uni-directional transport (single-headed arrows) ...

@080



Building a simple 1-D EBM

4 Consider only the steady-state (0T /ot = 0)
 Use the logistic formulation for F(0) - LHS below
 Use North’s approximation for S(6)

 Optionally allow albedo to vary with latitude
- 1.e., Ice-albedo feedback, via T,

d Use Budyko’s (simplest) formulation for mixing
- therefore a local balance for each latitude band

d Put it all together as OLWR = ISWR + mixing:

0.907;' [L—logistic{T, - 50}/100]
~ (- a(0))S{1-0.477P,(sin 6)}—K'(T, - T)




ISWR, OLWR

1-D EBM solutions - with Ice-Albedo and Water
Vapour Feedbacks : Mixing =0
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John Shepherd, University of Southampton @ G}@@



- with Ice-Albedo & Water Vapour Feedbacks, plus
Budyko-type mixing, Q =K' (T - T, ) [illustrative]

ISWR + mixing, OLWR

_ _n;% -~ %C001Sh0t% :
—latitudes
0ol - %x“‘:-——__-_h_:___
L Single curve = OLWR [LHS] |
Multiple curves = ISWR(0) + mixing [RHS]

Temperature

John Shepherd, University of Southampton @ (B@@



1-D EBM : Without Ice-Albedo Effect ;
No Atmospheric/Ocean Mixing

The Balance of Incoming and Outgoing Heat Fluxes

Heat Flux

Latitude - -5l

Temperature (C)

“Solid” surface = ISWR + mixing (= 0); “Hatched” surface = OLWR

Surfaces intersect (i.e., equlibria as function of latitude) where:
Outgoing heat flux = Incoming heat flux

John Shepherd, University of Southampton @ (B@@



1-D EBM : Without Ice-Albedo Effect ;
Mixing Diffusivity = 2 x 103 mks

The Balance of Incoming and Duiguiﬁg Heat Fluxes

Latitude -50

Temperature (C)

¢ Mixing reduces Equator-Pole temperature difference

John Shepherd, University of Southampton



1-D EBM : With Ice-Albedo & Water Vapour Feedbacks ;
Mixing = O

The Salence of Incomang #d Culgoing Hesl Flares

10"

B

Latiude

Temperature (C)

¢ “Kink” in the surface reveals 2 stable states (e.g., *) possible across
mid-latitudes (~15-40°) - supports possibility of “Snowball Earth”

John Shepherd, University of Southampton @ (D@@



1-D EBM : With Ice-Albedo and Water Vapour Feedbacks ;
Mixing Diffusivity = 2 x 103 mks

The Balence of Incaming and Outgoing Heat Fluxes

Latitude

Ternperature [G)

¢ Kink (hence bistability) reduced by meridional mixing
¢ Range of latitude with 2 stable states limited to ~50-60°

John Shepherd, University of Southampton @ {D@@



1-D EBM : With Ice-Albedo and Water Vapour Feedbacks ;
(larger) Mixing Diffusivity = 3 x 103 mks

The Balance of Incomng and Cutgosg Hesl Fluzes

« ™

Latdude Tempeature (C)

¢ Kink almost eliminated under strong meridional mixing
John Shepherd, University of Southampton @'



Plan view: With Ice-Albedo and Water Vapour Feedbacks ;
Diffusivity = 2 x 103 mks

N Clrndnl Anfibhhn Tllamadn Covmdnes

A Skeich of the Climate System
The Balance of Incoming and Outgoing Maat Fluces

-~ large (~30°C)
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John Shepherd, University of Southampton @ (B@@



Incorporating proper mixing into 1-D EBMs

4 Fickian diffusion, relating meridional mixing of heat to
local temperature gradient:

‘ QZK@TSIQV‘

[ Several methods are available:

(a) Analytical solutions, using expansion in Legendre
polynomials in sin(6) (North 1975, 1981)

(b) Numerical solutions
e steady-state : iterative solution of linear equations

e time-dependent : solving first-order ordinary or partial
differential equations

1 And K may be constant or variable ...

- e.g., parameterization of atmospheric eddy mixing
(Peter Stone, MIT):

- K ac k (0T/0y)" where 0.5 < n < 3 (varies with lat.)



=.

2) Meridional heat transport & meridional
temperature gradient (explained)
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Reproduced by permission of American Geophysical Union: North, G.R., Cahalan, R.F., Coakley, J.A, jr. Energy Balance Climate Models. Rev. Geopys. Space Phys, v.

19, no. 1, p. 91-121. February 1981. Copyright [1981] American Geophysical Union.




Pole-Equator Temperature Gradient :
vs. Solar Input & for constant / variable mixing

126 A CLIMATE MODELLING PRIMER
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Figure 4.15 The effect of the inclusion of a variable (i.e. itself a function of the
temperature gradient) diffusion coefficient, K, on the equator-to-pole temperature
gradient in an EBM (reproduced by permission of the American Meteorological
Society from Stone (1973) Journal of the Atmospheric Sciences, 30, 521-529)



3) The Faint Young Sun Paradox: Explained?

Temperature
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The Faint Young Sun Paradox
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Even though the Sun was about 30% dimmer than itis now,
the temperature on Earth has been more or less stable.

http://zebu.uoregon.edu/~imamura/122/images/faint_young_sun.jpg

Could mixing
help to keep
poles (hence
whole Earth)
warm at lower
luminosity?
More likely
associlated
with changing
atmospheric
composition




Simple EBM: the effect of (Fickian) mixing
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John Shepherd, University of Southampton @ G}@@)



1-D EBM : with Ice-Albedo feedback :

variable mixing in the range 0 to 6 x 10* m2s!
(decreasing, then increasing, in increments of 1 x 104 m?s-1)
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------------------------------------------------------- -10°C

20| glaciated

Temperature
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_ED 1 1 1 1 1 1 1 1 1 1
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John Shepherd, University of Southampton @ G}@@




Global-mean temperature, for each expt (from
previous slide) - reveals limited hysteresis*
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* Once glaciated, the
Earth cannot so easily
escape the glacial state
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Note: expts proceeded with Mixing rate = 6,5,4,3,2,1,0,1,2,3,4 x 104

John Shepherd, University of Southampton @ G}@@}



1-D EBM : with Ice-Albedo effect ;
fixed mixing 2 x 104 m2s1 ; varying solar constant
(decreasing, then increasing, in increments of 100 Wm-2)
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John Shepherd, University of Southampton @ G)@@




Global-mean temperature, for each expt (from
previous slide) - reveals more extensive hysteresis
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John Shepherd, University of Southampton @ G}@@




4) Snowball Earth Episodes (explained)

global mean surface temperature (°C)
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http://www.snowballearth.org/images/snwbltvst.gif

Once the Earth became glaciated, the higher ice
albedo reflected more ISWR, prolonging Snowball

Diagrams courtesy of Snowball Earth (Paul F Hoffmann). @ G}@@



Adding advective ocean transport

d Assume same temperature for atmosphere &
surface ocean (tight coupling = rapid exchange)

 Diffusive treatment for mixing (in both)
 actual location is irrelevant

d Add advective transport (overturning) in ocean
e can introduce asymmetry between N & S hemispheres
 may be modelled (THC) or specified (stream function)
e first approximation:
additional single box for deep ocean ...



1-D meridional EBM with specified oceanic MOC
(THC) & inter-hemispheric asymmetry of heat flux
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(Sketch courtesy John Shepherd)

N.B. upwelling & downwelling (“sinking”) link surface & deep ocean

John Shepherd, University of Southampton @ (B@@



Meridional temperature distribution for varying THC rates
(0 to 60 Sv and back down) : with ice-albedo & water
vapour feedbacks, K = 2 x 104 m?/s

NH high
latitudes
warm as
northward
ocean heat
transport
Increases

B Bt =l £l Al ] 1 il 4il &l

» Northward surface flow, Southward deep flow (Northward heat transport)

* Northern Hemisphere becomes (and remains) ice-free
John Shepherd, University of Southampton @ OSE



Global mean temperature for varying THC rates
(from previous slide)

T Earth avoids 7

I_Globlal-melan T )

g I I I l I
&1

THC rate (Sv)

Note: expts proceeded with THC rate =0, 10, ... 50, 60, 50, ... 10, 0 Sv
John Shepherd, University of Southampton @ OSE




Meridional temperature distribution for varying THC rates

(0 to 60 Sv and back down) : with ice-albedo and water vapour feedbacks,
K=2x10*m?s ;Ice albedo = 0.75 (increased from 0.7)

40

ice-free

—_————_—e—,e— e e e e e e e e e e . —— =

glaciated

’ -1 040 =50 &0 -40 =110 [ v 1} 40 50 a0 LD

» Southern Hemisphere glaciation spreads to the whole globe: Snowball state
» Harder to escape Snowball state, but possible, with strong enough THC

John Shepherd, University of Southampton @ G)@@



5) Meridional heat transport in the
Ocean & Atmosphere

Courtesy of Center for Multiscale Modelling of Atmospheric Processes Courtesy of LDEO

%DTHE GREAT OCEAN CONVEYOR

Mid-latitude cyclones as viewed The Global Ocean Conveyor Belt
from space above the South Pole.
(http://mwvww.cmmap.org/images/learn/climate/ferrel.jpg)

Atmosphere mixes heat, similarly in both

hemispheres; advection more dominant mode of
ocean heat transport, typically asymmetric about
the Equator, perhaps influencing Snowball state |

() OOO



Climate sensitivity re-visited

A Values of A (°K per W m-2):

(e.qg. for varying solar constant)

 black body (S-B law)

e + water vapour (Budyko)
e +|ce-albedo feedback
e If snowball state

0.30
0.46
0.64
0.24

(polar ice only)
(more ISWR reflects)



Summary (1)

» Introducing latitudinal effects

* Net gain (loss) of heat at low (high) latitudes
(depending on angle of obliquity)

 Equator-Pole temperature gradient - net
heating/cooling, moderated by meridional heat
transport
» 1-D (meridional) EBMs

* Extension of 0-D EBMs (a connected set of such
models)

Prescribing insolation as a function of latitude
Predicting local (rather than global) temperature
Allowing meridional (temperature) variation in albedo
Allowing meridional exchanges of heat



Summary (2)

» Introducing a heat balance with more terms
« Steady State balance of ISWR, OLWR, heat transport
 Parameterize heat transport with Newtonian relaxation
(simple) or Fickian diffusion (more appropriate)
» 1-D EBM predictions of temperature vs.latitude
« With/Without Ice-Albedo feedback
« With/Without Heat Mixing (and varying strength thereof)

» Prediction of multiple equilibria
 Bistabllity - two stable states - within a range of latitude

* The extent of which is controlled by mixing (stronger
mixing = reduced Equator-pole temperature gradients,
narrower or eliminated zone of bistability)



Summary (3)

» 1-D EBM experiments with Fickian diffusion
further reveal “Snowball Earth” state
o Under sufficiently small solar constant
* And reduced mixing

* Once in the Snowball state, can’t escape (hysteresis -
Incrementally increase & decrease control parameter)

» Also under variable ice albedo (0.70 to 0.75)

» Add explicit ocean heat transport (advective)
* Preferentially transporting heat northwards (at present)
e Raising temperature in high northern latitudes

« Alternative Snowball state also evident under varying
ocean heat transport
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