
Ontology Design Patterns

Questions

•  How can we represent an ordered list?

–  E.g. want to describe a bus route, how can we represent the
sequence of stops?

•  How can we add information to a relation (property)?

–  E.g. need to set a confidence value to the relation

•  How do we represent lists of values?

–  E.g. a fixed list of airline models

Topics

•  N-ary relations

–  How can we say more about a relation instance?

•  Classes as property values

–  What do we do if we need to use a Class as a property value?

•  Value partitions and value sets

–  How do we represent a fixed list of values?

Topics

•  N-ary relations

•  Classes as property values

•  Value partitions and Value sets

Binary Relations
•  In RDF and OWL, binary relations link two individuals, or an

individual and a value

•  The properties year-of-birth and father-of are binary relations

Holbein the Elder year-of-birth

Holbein the Younger

father_of

1460

Relations with additional info
•  In some cases, we need to associate additional info with a

binary relation

–  Eg certainty, strength, dates

•  For example, Holbein the Elder’s date of birth is unconfirmed

–  He was born in either 1460 or 1465

–  How can we represent this uncertainty?

year-of-birth
Holbein the Elder 1460

1465

year-of-birth
40%

60%

certainty-level certainty-level

N-ary Relations
•  N-ary relations link an individual to more than a single individual or

value

•  Use cases:

1.  A relation needs additional info
•  eg a relation with a rating value

2.  Two binary relations are related to each other
•  eg body_temp (high, normal, low), and trend (rising, falling)

3.  A relation between several individuals
•  eg someone buys a book from a bookstore

4.  Linking from, or to, an ordered list of individuals
•  eg an airline flight visiting a sequence of airports

•  Pattern 1: Creating a new class or relation
–  Use for cases 1, 2, and 3 above

•  Pattern 2: Sequence of arguments
–  For case 4

N-ary relation - Pattern 1:
Creating a new class or relation

•  To represent additional information about a
relations:

–  We can create a new class to represent the relation

–  The individuals of this class are instances of the relation

–  This class can have additional properties to describe more
information about the relation

Use case 1: additional
information about a relation

•  Jack has given the film ‘I Am Legend’ a rating
of 8

•  We need to represent a quantitative value to
describe the rating relation

  What is wrong with
this representation?

  What will happen
when Jack rates
other films?

Jack

8/10

I am Legend

film

film_rating

Film

Person

Rating

Jack

8

I am Legend

issued_rating _:Rating_1

rated_object

rating

Person

Film

Rating

Rating_Relation

rated_object
(someValuesFrom, functional)

issued_rating
(allValuesFrom)

rating_value
(allValuesFrom, functional)

Solution for use case 1

bNode

Use this icon to create
anonymous instances

Use case 2: different aspects of the same
relation
•  Steve has temperature, which is high, but falling

•  We need to represent different aspects of the temperature that Steve
has

Source: W3C

http://www.w3.org/TR/swbp-n-aryRelations/temperature.rdf

Use case 3: N-ary relation with
no distinguished participant

•  John buys a “Lenny the Lion” book from books.example.com for $15
as a birthday gift

•  No distinguished subject for the relation

–  i.e. no primary relation to convert into a Relation Class as in cases 1 and
2

Source: W3C

Solution for use case 3

http://www.w3.org/TR/swbp-n-aryRelations/purchase.rdf

http://www.w3.org/TR/swbp-n-aryRelations/purchase.rdf

N-ary Relations - Pattern 2:
Sequence of arguments

•  United Airlines, flight 1377 visits the following airports: LAX, DFW,
and JFK

•  For such an example, we need to represent a sequence of arguments

Source: W3C

N-ary Relations - Pattern 2:
Sequence of arguments
•  This is the OWL:Lite ontology to represent a sequence

Source: W3C

  :FinalFlightSegment a owl:Class ; 
 rdfs:comment "The last flight segment has no next_segment"; 
 rdfs:subClassOf :FlightSegment ; 
 rdfs:subClassOf 
 [a owl:Restriction ; owl:maxCardinality "0"; 
 owl:onProperty :next_segment] .

http://users.ecs.soton.ac.uk/ha/teaching/COMP3028/pattern2-flight-sequence.owl!

Topics

•  N-ary relations

•  Classes as property values

•  Value partitions and Value sets

Classes as property values

•  In some cases, it is convenient to put a class as a value of
some property

•  Classes can be property values in RDFS and OWL Full,
with no restrictions

•  In OWL DL and OWL Lite, classes cannot be property
values

–  Because nothing can be both a class and an individual

–  Need to use alternative mechanisms

Use case example

•  Represent two books about lions, one is about the species
of lion, and the other about the species of African lion

•  Retrieve both books when asking for books about lions

Animal

Lion

AfricanLion
The African

Lion

Lions: Life
in the Pride

Book

dc:subject

dc:subject

Approach 1:
Use classes directly as property values

•  The property dc:subject has the Animal classes as values

Source: W3C

http://users.ecs.soton.ac.uk/ha/teaching/COMP3028/approach1-book1.owl!

SPARQL Query

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>!

PREFIX dc: <http://purl.org/dc/elements/1.1/>!

PREFIX base: <http://www.ecs.soton.ac.uk/teaching/COMP3028/
book1.owl#>!

SELECT ?book !

WHERE { ?book dc:subject ?subject . !

 ?subject rdfs:subClassOf base:Lion}!

<http://www.ecs.soton.ac.uk/teaching/COMP3028/book1.owl#LionsLifeInThePrideBook>!
<http://www.ecs.soton.ac.uk/teaching/COMP3028/book1.owl#AfricanLionBook>!

Notes on Approach 1
•  This approach is the most intuitive

•  Resulting ontology is compatible with RDFS and OWL Full, but not
OWL DL or OWL Lite

•  The subjects are in a hierarchy (AfricanLion isA Lion isA Animal)

–  Application can use this hierarchy to find books about Lion as well as
books about its sub-subject; AricanLion

•  Good approach if:

–  Want to keep things simple

–  Don’t mind being in OWL Full

–  Don’t mind using the class hierarchy as book subject

Approach 2:
Using special instances

•  Use instances of classes as property values

Source: W3C

http://www.w3.org/TR/swbp-classes-as-values/books2.owl!

Approach 2

SPARQL Query
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>!
PREFIX base: <http://protege.stanford.edu/swbp/books2.owl#>!

SELECT ?book!
WHERE {!
 !?book dc:subject ?subject .!
 !?subject rdf:type base:Lion!
}!

<http://protege.stanford.edu/swbp/books2.owl#LionsLifeInThePrideBook>!
<http://protege.stanford.edu/swbp/books2.owl#AfricanLionBook>!

Notes on Approach 2
•  Classes are not used as values directly

–  Using their instances as property values instead

•  Ontology is compatible with OWL DL and OWL Lite

•  We used the class Lion for the subject lion

–  Need a different one to refer to actual lions!

–  Shouldn’t use the same concept for two conceptually different things

–  We need to be extra careful if the Animal ontology is important

•  Changing the meaning of classes may cause some interpretation problems

•  No direct relation between the subjects

–  But the instance AfricanLionSubject is also an instance of Lion

•  Use this approach if:

–  Want to stick to OWL DL or OWL Lite

–  Won’t be changing the original meaning of any of the classes

–  Not concerned with the subjects not having direct links

Approach 3:
Using a parallel instance hierarchy

•  Create a separate subject class

Source: W3C

http://www.w3.org/TR/swbp-classes-as-values/books3.owl!

Approach 3

SPARQL Query

PREFIX dc: <http://purl.org/dc/elements/1.1/>!

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>!

PREFIX base: <http://protege.stanford.edu/swbp/books3.owl#>!

SELECT ?book!

WHERE { ?book dc:subject ?subject . !

 ! ?subject rdfs:seeAlso ?class . !

! ?class rdfs:subClassOf base:Lion!

! }!

•  One way of querying this model is by using the seeAlso annotation property.

•  You can also query the transitive parentSubject property

<http://protege.stanford.edu/swbp/books3.owl#LionsLifeInThePrideBook>!
<http://protege.stanford.edu/swbp/books3.owl#AfricanLionBook>!

Approach 3
•  Compatible with OWL DL and OWL Lite

–  Using classes as values for annotation properties (eg rdfs:seeAlso) does not change
OWL DL compatibility

•  The subject hierarchy can be recreated using the parentSubject

–  This property is transitive

–  Most reasoners can infer the parentSubject transitive property

•  But they won’t be able to infer that a book about LionSubject is also about Animals

•  Semantics for Lion and for the Lion subject are preserved

•  The Animal and Subject hierarchies are independent of each other

•  Maintenance is increased

–  Need to make sure all these classes and instances are consistent

•  Use if:

–  Need to stay in OWL DL

–  Need to reason over the subject hierarchy

–  Not bothered by having parallel hierarchies

Approach 4
Using special restrictions

•  Restrictions are used instead of specific values

Source: W3C

Defined concepts

Approach 4

http://www.w3.org/TR/swbp-classes-as-values/books4.owl!

stays
empty

Approach 4

SPARQL Query

PREFIX dc: <http://purl.org/dc/elements/1.1/>!

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> !

PREFIX base: <http://protege.stanford.edu/swbp/books3.owl#>!

SELECT ?book!

WHERE { ?book rdf:type base:BookAboutLions }!

<http://protege.stanford.edu/swbp/books4.owl#LionsLifeInThePrideBook>!
<http://protege.stanford.edu/swbp/books4.owl#AfricanLionBook>!

•  Only the first book will be returned if no reasoner is used

Approach 4

•  Compatible with OWL DL

•  A reasoner can infer that a book with subject Lion also has the subject
Animal

–  Can use a DL reasoner to classify specific books

•  Subjects are assigned to books by creating instances of the relevant book
subject class

–  No need to explicitly set any subject values

–  Can also use unspecified individuals of the class as property values, rather than
the class itself

–  Interpretation: the subject is a prototypical lion, rather than the Lion class

•  Use if:

–  Want to be in OWL DL

–  Want to use DL reaonsers to classify your ontology

Approach 5:
Using annotation properties

•  Link individuals of Book with subjects using an
annotation property

Source: W3C

•  Implementing this ontology in Protégé turns the ontology
into OWL:FULL

–  Because the property becomes both owl:ObjectProperty and
owl:AnnotationProperty

•  Better to write/fix it by hand

•  Download it from:

http://users.ecs.soton.ac.uk/ha/teaching/COMP3028/
approach5-books5.owl!

Approach 5

Validating the Ontology

SPARQL Query
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> !

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>!

PREFIX base: <http://www.ecs.soton.ac.uk/teaching/COMP3028/approach5-
books5.owl#> !

SELECT ?book !

WHERE { ?book rdf:type base:Book .!

 ?book base:subject ?class . !

 ?class rdfs:subClassOf base:Lion }!

<http://www.ecs.soton.ac.uk/teaching/COMP3028/approach5-
books5.owl#LionsLifeInThePrideBook>!
<http://www.ecs.soton.ac.uk/teaching/COMP3028/approach5-
books5.owl#AfricanLionBook>!

Approach 5
•  Compatible with OWL DL

–  Annotation properties can have classes as values in OWL DL

•  Annotation properties cannot have different types

–  dc:subject cannot be an annotation property and an object or datatype
property

–  This will render the ontology OWL FULL

•  Restrictions cannot be applied to annotation properties

•  DL reasoners don’t use annotation values

Topics

•  N-ary relations

•  Classes as property values

•  Value partitions and Value sets

Value Partition
•  Descriptive features are quite common in ontologies

•  Examples:

–  Size {small, medium, large}

–  Risk {dangerous, risky, safe}

–  Health status {good health, medium health, poor health}

•  Also called “qualities”, “modifiers”, “attributes”

•  A property can have only one value for each feature to ensure consistency

•  Such features can be represented as:

–  Enumerated individuals

–  Disjoint classes

–  Datatype values

Approach 1
Values as sets of individuals

Source: W3C

•  Class Health_Value is an enumeration of three
individuals

What happens if
we don’t add this

axiom?

Inferred

For Geeks Only

:has_health_status!

 a owl:ObjectProperty , owl:FunctionalProperty ;!

 rdfs:range :Health_Value .!

John!

 a :Person ;!

 :has_health_status :good_health .!

:good_health!

 a :Health_Value .!

:Healthy_person!

 a owl:Class ;!

 owl:equivalentClass!

 [a owl:Class ;!

 owl:intersectionOf (:Person [a owl:Restriction ;!

 owl:hasValue :good_health ;!

 owl:onProperty :has_health_status!

])!

] .!

http://www.w3.org/TR/swbp-specified-values/values-as-individuals-01.owl!

-  Create an individual of the class Person
-  add good_health as vaue for has_health_status
-  Click the inference button
-  View the inferred types for this individual

If you add an individual to Healthy_person directly, then
property has_health_status will automatically be given the
value good_health

Approach 1: Values as sets of individuals

Approach 1: Values as sets
of individuals
•  Need an axiom to set the three health values to be different from each other

–  This way, a person cannot have more than one health value at a time

•  Values cannot be further partitioned

–  Eg we cannot have moderately_good_health as a subtype of good_health

–  Only equality and difference between individuals is allowed in OWL

•  Only one set of values is allows for a feature

–  The class cannot be equivalent to more than one set of distinct values

–  Doing so will cause inconsistencies

•  OWL DL compatible

Approach 2:
Values as subclasses

•  Values are disjoint subclasses

http://www.w3.org/TR/swbp-specified-values/value-partitions-
variant-1.owl!

The inference engine can
now infer that

John is a Healthy_person

Approach 2: Values as subclasses

Approach 2: Values as
subclasses

•  The instance Johns_Health can be made anonymous

Approach 2: Values as subclasses

•  OWL DL compatible

•  DL reasoners can classify the ontology

•  Values can be further partitioned

– Simply add subclasses to the value classes

•  Can have alternative partitioning of the same feature

OWL Wizards

•  Protégé has OWL wizards for creating n-ary
relations, value partitions and enumerations (values
as individuals)

Meronymies (part-whole relations)

•  Taxonomies are not the only hierarchical relation that we
wish to model

•  A spark plug isn’t a kind of engine (class-instance)

•  A spark plug is a part of an engine

57

Simple Part-Whole Representation

•  We need two properties:

– partOf (a transitive property)

– directPartOf (a subproperty of partOf)

58

Part-Whole Hierarchies

•  Represent part-whole relationships between classes using
someValuesFrom restrictions

59

SparkPlug � ∃ directPartOf.Engine

Engine � ∃ directPartOf.Car

Defining Classes of Parts

•  Extend the ontology with classes of parts for each level

– Reasoner can automatically derive a class hierarchy

60

CarPart ≡ ∃ partOf.Car

DirectCarPart ≡ ∃ directPartOf.Car

EnginePart ≡ ∃ partOf.Engine

Fault location

•  Allows reasoner to conclude that a fault in a part is a fault in
a whole

•  Need a new property for the location of a fault: hasLocus

•  Need a new class for faults: Fault

61

FaultInCar ≡ Fault � ∃ hasLocus.CarPart
FaultInEngine ≡ Fault � ∃ hasLocus.EnginePart

