
Maths 3018/6111 - Numerical Methods

Worksheet 3 - Solutions

Theory
1. Apply Simpson’s rule to compute ∫ π/2

0

cos(x) dx

using 3 points (so h = π/4) and 5 points (so h = π/8).

The exact solution is, of course, 1.

Simpson’s rule (composite version) is

I =
h

3

f(a) + f(b) + 2

N/2−1∑
j=1

f(x2j) + 4

N/2∑
j=1

f(x2j−1


where we are using N + 1 points with x0 = a, xN = b, equally spaced with grid spacing h =
(b− a)/N .

With 3 points we have N = 2 and h = (π/2)/2 = π/4, and so we have nodes and samples given by

i xi f(xi)
0 0 1
1 π/4 1√

2

2 π/2 0

Using Simpsons rule we then get

I =
h

3
[f0 + f2 + 4f1]

=
π

12

(
1 + 2

√
2
)

≈ 1.0023.

With 5 points we have N = 4 and h = (π/2)/4 = π/8, and so we have nodes and samples given by

i xi f(xi)
0 0 1
1 π/8 cos(π/8) ≈ 0.9239
2 π/4 1√

2

3 3π/8 cos(3π/8) ≈ 0.3827
4 π/2 0

Using Simpsons rule we then get

I =
h

3
[f0 + f4 + 4(f1 + f3) + 2f2]

=
π

24

(
1 + 4(cos(π/8) + cos(3π/8)) +

√
2
)

≈ 1.00013.
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2. Apply Richardson extrapolation to the result above; does the answer improve?

Simpson’s rule has order of accuracy 4. We note that we have just computed the result using 3
(N = 2) and 5 (N = 4) points. Richardson extrapolation gives the result

R4 =
24I4 − I2
24 − 1

≈ 0.999992.

We note that the error has gone from 2.3× 10−3 for I2 to 1.3× 10−4 for I4 and now to 8.4× 10−6

for the Richardson extrapolation R4, a good improvement.

3. State the rate of convergence of the trapezoidal rule and Simpson’s rule, and sketch (or explain in
words) the proof.

For the trapezoidal rule the error converges as h2. For Simpson’s rule the error converges as h4.

In both cases the proof takes a similar path. Consider the quadrature over a single subinterval. Taylor
series expand the quadrature rule about a suitable point xj (left edge for trapezoidal rule, centre for
Simpson’s rule) to get an expression for the quadrature of the interval in terms of h and the function
f and its derivatives as evaluated at xj .

Next write down the anti-derivative F (t) of f for the interval as a function of the width of the interval
t. This, when evaluated at t = h, is the exact solution for the quadrature of the subinterval. Taylor
series expand F about t = 0 to get an expression for the exact result in terms of h and the function
f and its derivatives as evaluated at xj .

By comparing the two expressions we have a bound on the error in terms of h and derivatives of f .
By summing over all intervals (note that at this stage we lose a power of h as we haveN subintervals
with N ∝ h−1) we can bound the global error in terms of h and the maximum value of a derivative
of f .

4. Explain in words adaptive and Gaussian quadrature, in particular the aims of each and the times
when one or the other is more useful.

Adaptive quadrature uses any standard quadrature method and some error estimator, such as Richard-
son extrapolation, to place additional nodes wherever required to ensure that the error is less than
some desired tolerance. Each subinterval is tested to ensure that its (appropriately weighted) con-
tribution to the total error is sufficiently small. If it is not, the subinterval is further subdivided by
introducing more nodes in a fashion appropriate for the quadrature method used. This is a straightfor-
ward way of getting high accuracy for low computational cost using standard quadrature algorithms.

Gaussian quadrature aims to get the best result for a generic function by allowing both the choice
of nodes and weights to vary. The location of the nodes and the value of the weights is given by
ensuring that the quadrature is exact for as many polynomials as possible; i.e., if we have N nodes
(and hence N weights) we should be able to exactly integrate xs for 0 ≤ s ≤ 2N − 1. By introduing
a weighting function we can also deal with integrands that are (mildly) singular at the boundaries
of the domain, or unbounded domains. Provided the function can be evaluated anywhere this is an
effective way of getting high accuracy with few function evaluations for most functions.
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5. [3018 only] Show how the speed of convergence of a nonlinear root finding method depends and the
derivatives of the map g(x) near the fixed point s.

We assume we are constructing an iterative sequence xn where xn+1 = g(xn), and that the error at
step n is en = xn − s. Then if we assume that the step xn+1 is sufficiently close to the root s then
we can write

en+1 = xn+1 − s
= g(xn)− g(s)

using the definition of the sequence and the fixed point

= g′(s)(xn − s) +
g′′(s)

2!
(xn − s)2 +O

(
(xn − s)3

)
by Taylor expanding

= g′(s)en +
g′′(s)

2!
e2n +O

(
e3n
)
.

Hence if g′(s) 6= 0 we have that the error reduces by a constant amount proportional to the derivative
at each step. If the derivative does vanish the error at each iteration is proportional to the square of
the previous error which leads to faster convergence.

6. [3018 only] Use Newton’s method to find the root in [0, 1] of

f(x) = sin(x)− ex + 0.9 + x.

Start from x0 = 1/2 and retain 3 significant figures. Take 3 steps.

For Newton’s method we have

xn+1 = xn −
f(xn)

f ′(xn)
.

So first we compute the derivative,

f ′(x) = cos(x)− ex + 1.

It follows that the iterative scheme is give by

xn+1 = xn −
sin(xn)− exn + 0.9 + xn

cos(xn)− exn + 1
.

We start from x0 = 1/2 and compute with full precision but only retain 3 significant figures for the
values of the xn:

x1 = x0 −
sin(x0)− ex0 + 0.9 + x0

cos(x0)− ex0 + 1

≈ −0.508;
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retaining 3 s.f. we set x1 = −0.508, and find

x2 = x1 −
sin(x1)− ex1 + 0.9 + x1

cos(x1)− ex1 + 1

≈ 0.0393;

retaining 3 s.f. we set x2 = 0.0393, and find

x3 = x2 −
sin(x2)− ex2 + 0.9 + x2

cos(x2)− ex2 + 1

≈ 0.103.

After 5 steps you would see, to 3 s.f., that it has converged to 0.106, so after 3 steps it does quite
well; a better approximation to the solution is 0.106022965 . . . .


