


COMP1202 – Building Better Programs
Computational Thinking

Son Hoang
(adapted from Prof David Millard’s slides)

COMP1202 (AY2022-23)



Part 1

Organisation



4

Reminder: Getting Help

• Now is about the time when some people realise they are getting lost

• If this is you, Act!

– Check you are practicing enough (6 hours per week + lectures and labs)

– Attend Ground Controllers

– Ask the demonstrators in the Labs

– See Helpdesk with specific topics/questions (Discord, Email, B16 Level 2)

• See their calendar https://secure.ecs.soton.ac.uk/student/wiki/w/Helpdesk

– Form a study group

https://secure.ecs.soton.ac.uk/student/wiki/w/Helpdesk


5

Building Better Programs

• To help we will spend this week consolidating some of the ideas we have 
encountered so far in order to answer a not-so-simple question:

– How do you write good code?

• In the previous lecture, we discussed one of the fundamental principles of Object 
Oriented Programming: Encapsulation



6

Coming Up

• Introduction to Algorithms

– Definition

– Characteristics

• Problems to Solutions

– The Difficulties

– From Steps to Methods

– Object-Oriented Solutions



Part 2

Algorithms



8

Definitions - Etymology

Algorism (n)

– the Arabic system of arithmetical notation (with the figures 1, 2, 3, etc.).

– the art of computation with the Arabic figures, performing arithmetic.

• Persian mathematician Abu Abdullah Muhammad ibn Musa al-Khwarizmi 
(the early 9th century)

– Their name is Latinised as Algorithmi

• Europe became aware of his work on Algebra

• Arab numerals became associated with his name

• Has since evolved to mean all processes for solving tasks



9

Definitions - Dictionary

Algorithm (n)

“… is a finite sequence of rigorous instructions, typically used to solve a class of
specific problems or to perform a computation.”

Wikipedia (2022)

“A procedure or set of rules used in calculation and problem-solving; … a precisely
defined set of mathematical or logical operations for the performance of a
particular task.”

Oxford English Dictionary (2022)

“a step-by-step procedure for solving a problem or accomplishing some end”

Merriam Webster Dictionary (2022)



10

Definitions - Dictionary

Algorithm (n)

“… is a finite sequence of rigorous instructions, typically used to solve a class of
specific problems or to perform a computation.”

Wikipedia (2022)

“A procedure or set of rules used in calculation and problem-solving; … a precisely
defined set of mathematical or logical operations for the performance of a
particular task.”

Oxford English Dictionary (2022)

“a step-by-step procedure for solving a problem or accomplishing some end”

Merriam Webster Dictionary (2022)



11

Definitions - Dictionary

Algorithm (n)

“… is a finite sequence of rigorous instructions, typically used to solve a class of
specific problems or to perform a computation.”

Wikipedia (2022)

“A procedure or set of rules used in calculation and problem-solving; … a precisely
defined set of mathematical or logical operations for the performance of a
particular task.”

Oxford English Dictionary (2022)

“a step-by-step procedure for solving a problem or accomplishing some end”

Merriam Webster Dictionary (2022)



12

Definitions - Dictionary

Algorithm (n)

“… is a finite sequence of rigorous instructions, typically used to solve a class of
specific problems or to perform a computation.”

Wikipedia (2022)

“A procedure or set of rules used in calculation and problem-solving; … a precisely
defined set of mathematical or logical operations for the performance of a
particular task.”

Oxford English Dictionary (2022)

“a step-by-step procedure for solving a problem or accomplishing some end”

Merriam Webster Dictionary (2022)



13

Characteristics of an Algorithm

• Performance

What else?



14

Characteristics of an Algorithm

• Performance

• Efficiency

• Understandability

• Scalability

• Reusability

• Reliability

• Elegance

– Elegance (n). Of scientific processes, demonstrations, inventions, etc.: ‘Neatness’,
ingenious simplicity, convenience, and effectiveness - OED



Part 3

From Problem to Solution



16

Example: Making a Cup of Tea
• Get into small groups of 3 or 4 and write 

down the steps that you need to do in 
order to make a cup of tea

• Use a sequence of simple statements like 
‘Boil Water’ or ‘Put Milk in Cup’

• Try and put down an appropriate level of 
detail so that a person could follow your 
instructions unambiguously

• Can you group certain steps together (for 
example, are the first few about 
preparation)? Give these groups sensible 
names.



17

Swap with Another Group
• Take a look at the tea-making instructions of 

another group

• Annotate their instructions if:

– Any instruction is ambiguous

– They have missed something out

– They have made an assumption

– They have created a group that doesn’t make 
sense to you

• Also if they have done anything you really like :-)



18

Go Back to Your Own Instructions

• Take a few moments to see what they have 
said

– Are the comments fair?

– Any unexpected ones?

– Would you make any changes now you have 
seen someone else’s instructions?



19

Writing Sequences is Easy…

… But getting the sequence right is hard

• Often the specification is inadequate

– It is easy to make assumptions without realising it

• Making it complete is challenging

– Making sure not to miss smaller, less-obvious steps

– Creating unambiguous instructions

• Machines are very unforgiving, they do exactly what you ask – nothing more, 
nothing less



20

Example. Making a Cup of Tea
Make a Cup of Tea
Get Cup
Get Kettle
Get Tea
Get Milk
Get Sugar Lumps
Empty Kettle
Fill Kettle with Water
Switch Kettle on
Wait until Kettle Boils
Put Tea in Pot
Put Boiling Water in Pot
Wait 2 Minutes
Put Milk in Cup
Pour Tea in Cup
Put 1 Sugar Lump in Cup
Stir Tea in Cup
Give Cup of Tea to User

Pseudocode

Assumptions?



21

Example. Making a Cup of Tea
Make a Cup of Tea
Get Cup
Get Kettle
Get Tea
Get Milk
Get Sugar Lumps
Empty Kettle
Fill Kettle with Water
Switch Kettle on
Wait until Kettle Boils
Put Tea in Pot
Put Boiling Water in Pot
Wait 2 Minutes
Put Milk in Cup
Pour Tea in Cup
Put 1 Sugar Lump in Cup
Stir Tea in Cup
Give Cup of Tea to User

Pseudocode

Assumptions?

• Electric Kettle
• Users want Milk and Sugar
• Only making 1 cup of tea
• Nothing goes wrong!



22

Modules

• Modules break an algorithm into logical parts (like your groups)

– Helps with Clarity and Understandability

• Modules can be reused

– Within the same algorithm

– In a different algorithm

• In Programming Modules can be called:

– Sub-routines (in older languages)

– Functions (in procedural languages like C)

– Methods (in object-oriented languages like Java)



23

Example. Making a Cup of Tea
Make a Cup of Tea
Get Cup
Get Kettle
Get Tea
Get Milk
Get Sugar Lumps
Empty Kettle
Fill Kettle with Water
Switch Kettle on
Wait until Kettle Boils
Put Tea in Pot
Put Boiling Water in Pot
Wait 2 Minutes
Put Milk in Cup
Pour Tea in Cup
Put 1 Sugar Lump in Cup
Stir Tea in Cup
Give Cup of Tea to User



24

Fetch Utensils and Ingredients

Boil Water in Kettle

Make Tea in Pot

Add Tea, Milk and Sugar to Cup

Example. Making a Cup of Tea
Make a Cup of Tea
Get Cup
Get Kettle
Get Tea
Get Milk
Get Sugar Lumps
Empty Kettle
Fill Kettle with Water
Switch Kettle on
Wait until Kettle Boils
Put Tea in Pot
Put Boiling Water in Pot
Wait 2 Minutes
Put Milk in Cup
Pour Tea in Cup
Put 1 Sugar Lump in Cup
Stir Tea in Cup
Give Cup of Tea to User



25

Example. Making a Cup of Tea
Make a Cup of Tea
Fetch Utensils and Ingredients
Boil Water in Kettle
Make Tea in Pot
Add Tea, Milk and Sugar to Cup
Give Cup of Tea to User

Fetch Utensils and Ingredients
Get Cup
Get Kettle
Get Tea
Get Milk
Get Sugar Lumps

Boil Water in Kettle
Empty Kettle
Fill Kettle with Water
Switch Kettle on
Wait until Kettle Boils

Make Tea in Pot
Put Tea in Pot
Put Boiling Water in Pot
Wait 2 Minutes

Add Tea, Milk and Sugar to Cup
Put Milk in Cup
Pour Tea in Cup
Put 1 Sugar Lump in Cup
Stir Tea in Cup
Give Cup of Tea to User



26

A Procedural Approach? 
What about Object Oriented Solutions?
Make a Cup of Tea
Fetch Utensils and Ingredients
Boil Water in Kettle
Make Tea in Pot
Add Tea, Milk and Sugar to Cup
Give Cup of Tea to User

Fetch Utensils and Ingredients
Get Cup
Get Kettle
Get Tea
Get Milk
Get Sugar Lumps

Boil Water in Kettle
Empty Kettle
Fill Kettle with Water
Switch Kettle on
Wait until Kettle Boils

Make Tea in Pot
Put Tea in Pot
Put Boiling Water in Pot
Wait 2 Minutes

Add Tea, Milk and Sugar to Cup
Put Milk in Cup
Pour Tea in Cup
Put 1 Sugar Lump in Cup
Stir Tea in Cup
Give Cup of Tea to User

What are the objects?

Remember: 
objects should have 
behaviour and/or 
bring together a 
particular set of data



27

A Procedural Approach? 
What about Object Oriented Solutions?
Make a Cup of Tea
Fetch Utensils and Ingredients
Boil Water in Kettle
Make Tea in Pot
Add Tea, Milk and Sugar to Cup
Give Cup of Tea to User

Fetch Utensils and Ingredients
Get Cup
Get Kettle
Get Tea
Get Milk
Get Sugar Lumps

Boil Water in Kettle
Empty Kettle
Fill Kettle with Water
Switch Kettle on
Wait until Kettle Boils

Make Tea in Pot
Put Tea in Pot
Put Boiling Water in Pot
Wait 2 Minutes

Add Tea, Milk and Sugar to Cup
Put Milk in Cup
Pour Tea in Cup
Put 1 Sugar Lump in Cup
Stir Tea in Cup
Give Cup of Tea to User

What are the objects?

Remember: 
objects should have 
behaviour and/or 
bring together a 
particular set of data

TeaMaker?



28

A Procedural Approach? 
What about Object Oriented Solutions?
Make a Cup of Tea
Fetch Utensils and Ingredients
Boil Water in Kettle
Make Tea in Pot
Add Tea, Milk and Sugar to Cup
Give Cup of Tea to User

TeaMaker?

public class TeaMaker {
Kettle kettle = new Kettle();
Teapot pot = new Teapot();

public static void main(String[] args){
TeaMaker maker = new TeaMaker();
Cup cup = maker.makeTea(true, 1);

}

public Cup makeTea(boolean milk, int sugars){
if (haveIngredients(milk, sugars)) {

kettle.boilWater();
pot.addTeaBags();
kettle.pourWaterInto(pot);
Cup cup = prepareCup(milk, sugars);
pot.pourTeaInto(cup);
return cup;

}
}

}

Warning: Kettle, Teapot
and Cup classes need to 
be defined, and some 
other methods are 
needed in TeaMaker



Part 4

A Note on Coding Style



30

Naming

• Data and Methods should have meaningful names

– Classes – UpperCamelCase

– Variables/Methods/Parameters – lowerCamelCase

– Constants – UPPERCASE

• Java is a verbose language - Embrace it!

• Don’t be afraid to be explicit (within reason!)

– avMk

– averageMark

– averageMarkOfAnIndividualStudentInProgramming1Cohort



31

Layout

• Code should be indented so that the structure is clear

• Use brackets to be explicit about grouping statements

public static void main(String[] args) {
Account myAccountObject = new Account();
myAccountObject.withdraw(5);
myAccountObject.withdraw(10);

}

public static void main(String[] args) 
{Account myAccountObject = new Account();
myAccountObject.withdraw(5);
myAccountObject.withdraw(10);}

vs.



32

Comments

• Comments should explain appropriate blocks of code

– Every method / class

– Every logical section of a method

• There is no need to explain the obvious!

// add 100 to the variable i

int i = i + 100;

• Java has an advanced comment system called JavaDoc

– Compiles comments into documentation

– The Java API is entirely generated by JavaDoc



33

Style Guide

• Google has a good style guide:

– https://google.github.io/styleguide/javaguide.html

• Note that everyone has minor differences (quirks) in the way they program

• Most important to be consistent, and to be clear

• Labs feedback contains “warnings” about code style (no marks deducted).

• We will ask you to follow Google Java Style in the coursework

(check out the Obfuscated Code Contest – it is worth a quick Google – and is 
everything that you should NOT do!)

https://google.github.io/styleguide/javaguide.html


YOUR QUESTIONS
• Introduction to Algorithms

– Definition

– Characteristics

• Problems to Solutions
– The Difficulties
– From Steps to Methods

• Java Coding Style


