
SEAtS: 812900

My Engagement Class Code: 812900

SEAtS: 812900

Introduction to Java

Son Hoang
(adapted from Prof David Millard’s slides)

COMP1202 (AY2023-24)

3SEAtS: 812900

Content

• How Java Works: The JVM

• Writing a Class in Java
– Class

– Member Variables

– Methods

– Statements

• Magic incantations
– The main() method

• A First Example
– Defining an Account class

– if and Boolean operations

• Introducing the Toolbox

SEAtS: 812900

Part 1

How Java Works

5SEAtS: 812900

From Code to Program

• You write code...

• You compile code

• You run the program

My Code

My Code My ProgramCompiler

My
Program

Me

The
Computer

6SEAtS: 812900

From Code to Program

• You write code...

• You compile code

• You run the program

My Code.java

My Code
.java

My Program
.class

Compiler
javac

My
Program

.classMe

The
Computer

The
JVM

7SEAtS: 812900

What is a JVM?

• Java Virtual Machine

• Each operating system / machine is different at a very low level:

– Different way of putting things on the screen

– Different way of making sound

– Different way of taking input from keyboard

– etc…

• So how can Java work on all these platforms?

8SEAtS: 812900

What is a JVM?

So the JVM is software that allows your Java program to run on any platform where
there is a JVM

The JVM

Your Program

The Machine

9SEAtS: 812900

To Compile and Run a Class

• Save with same name as class

– e.g., Dog.java

– (Rule: Must do this)

• Command line to folder

• Compile (create the .class file)

– javac Dog.java

• Run (execute the .class file)

– java Dog

SEAtS: 812900

YOUR QUESTIONS
Summary on how Java works

• The process of from code to program

• The purpose of a JVM
• What is javac command for?
• What is java command for?

SEAtS: 812900

Part 2

Writing a Class in Java

12SEAtS: 812900

Dog.java

Structure

public class Dog
{

public String noise = “Woof”;

public void bark()
{

System.out.println(noise);
}

}

Source file
A Source file is
a basic text
file. Normally
these end .txt,
but for java we
always save
them as .java

13SEAtS: 812900

Dog.java

Structure

public class Dog
{

private String noise = “Woof”;

public void bark()
{

System.out.println(noise);
}

}

Source file

Class

Remember. A
class is the
blueprint for an
object

14SEAtS: 812900

Dog.java

Structure

public class Dog
{

private String noise = “Woof”;

public void bark()
{

System.out.println(noise);
}

}

Source file

Class

Member
Variable

Member variables are how
Java handles properties,
they store data about the
class

It means that all objects
(of this class) will contain
their own copy of the
variable

15SEAtS: 812900

Dog.java

Structure

public class Dog
{

private String noise = “Woof”;

public void bark()
{

System.out.println(noise);
}

}

Source file

Class

Member
Variable

Method

Methods do things,
they define
behaviour.

16SEAtS: 812900

Dog.java

Structure

public class Dog
{

private String noise = “Woof”;

public void bark()
{

System.out.println(noise);
}

}

Source file

Class

Member
Variable

Method

Statement

Statements are the
lines that actually
do the operations.
Each statement
ends in a ;

SEAtS: 812900

Part 3

A Detour. Magic Incantations

18SEAtS: 812900

Magic Incantations

Programming is a complex study

You start learning something…
and find out you need to know
something else to understand it

and something else to understand that

and something else to understand that

19SEAtS: 812900

Magic Incantations

Dog.java

public class Dog
{
private String noise = “Woof”;

public void doBark()
{

System.out.println(noise);
}

}

20SEAtS: 812900

Magic Incantations

We will explain all these things

You may not understand the ‘incantations’
But don’t let it bother you, trust that they
work

You will understand later

You can start going nowhere fast if you
try and understand everything at once!

Go with the flow

21SEAtS: 812900

Magic Incantation #1

• Where does a program start?

• The program is made up of lots of classes, and those classes have methods, but
which method is called first?

• In a special method called ‘main’

public static void main(String[] args){

}

22SEAtS: 812900

The main method

• Creates the objects you need and
tells them what to do, a bit like a
conductor in an orchestra.

• It does not matter which class you
put the main method in. You can
put it in its own one if you like.

Dog.java

public class Dog
{

private String noise = “Woof”;

public void bark() {
System.out.println(noise);

}

public static void main(String[] args){
 Dog d = new Dog();
 d.bark();
 }
}

23SEAtS: 812900

Remember …

• Your class is just a template

• To make your program work you need objects

– The instances of your class

public static void main(String[] args){
 Dog d = new Dog();
 d.bark();
}

SEAtS: 812900

YOUR QUESTIONS
Summary of Writing a Java Class

• Java classes

• member variables

• methods

• statements
• Magic incantation: the main() method

• Creating an instance of a class

SEAtS: 812900

Part 4

A First Example

26SEAtS: 812900

Banking Example

public class Account{

 int balance = 10; //the bank balance
 boolean active = false; //true if the account is active

 public void withdrawFiver(){
 balance = balance – 5;
 }
}

Note that we can use
// to show that
everything that
follows on that line
is a comment and
should be ignored by
Java compiler

int and boolean
are variable types,
they tell Java what
sort of thing is
stored in the
variables

27SEAtS: 812900

Making Decisions

• Often we want to make the result of a program conditional on something

• If the bank account is not active

• Don’t allow a withdrawal

– Else, if the account doesn’t have enough money

• Don’t allow a withdrawal

– Else

• Allow the withdrawal

• For this, we need a control structure called if/else

28SEAtS: 812900

Withdrawal
public class Account{

 int balance; //the bank balance

 boolean active; // true if the account is active

 active = true; //set active to true

 // some code omitted

 public void withdrawFiver(){

 if (active != true)

 System.out.println(“Your account isn’t active”);

 }
}

a != b is a conditional
operator, it performs a
logical test on a and b and
returns true if they are not
equal.

Other conditionals include <,
> and ==

The one statement
immediately following the if
will only be run if the
condition between the ()
brackets is true

29SEAtS: 812900

Withdrawal
public class Account{

 int balance; //the bank balance

 boolean active; // true if the account is active

 active = true; //set active to true

 // some code omitted

 public void withdrawFiver(){

 if (active != true) {

 System.out.println(“Your account isn’t active”);

 System.out.println(“Withdrawal is not allowed”);

 }

 }
}

We can use {} to group several
statements together so that the if
applies to all of them together

30SEAtS: 812900

Withdrawal
public class Account{

 int balance; //the bank balance

 boolean active; // true if the account is active

 active = true; //set active to true

 // some code omitted

 public void withdrawFiver(){

 if (!active) {

 System.out.println(“Your account isn’t active”);

 System.out.println(“Withdrawal is not allowed”);

 }

 }
}

We can simplify

! Is a logical operator, it reverses
a logical value (so !a returns true if
a is false)

Other logical operators are OR (a ||
b), AND (a && b)

31SEAtS: 812900

Withdrawal
public class Account{

 int balance; //the bank balance

 boolean active; // true if the account is active

 active = true; //set active to true

 // some code omitted

 public void withdrawFiver(){

 if (!active) {

 System.out.println(“Your account isn’t active”);

 System.out.println(“Withdrawal is not allowed”);

 } else {

 balance = balance – 5;

 }

 }

}

Optionally we can add an else
clause.

32SEAtS: 812900

Withdrawal
public class Account{

 int balance; //the bank balance

 boolean active; // true if the account is active
 active = true; //set active to true

 // some code omitted

 public void withdrawFiver(){
 if (!active) {
 System.out.println(“Your account isn’t active”);
 System.out.println(“Withdrawal is not allowed”);
 } else {
 if (balance < 5) {
 System.out.println(“Not enough money!”);
 } else {
 balance = balance – 5;
 }

 }
 }
}

A whole if/else block is actually a
single statement, so we can chain
them together like this

33SEAtS: 812900

Withdrawal
public class Account{

 int balance; //the bank balance

 boolean active; // true if the account is active
 active = true; //set active to true

 // some code omitted

 public void withdrawFiver(){
 if (!active) {
 System.out.println(“Your account isn’t active”);
 System.out.println(“Withdrawal is not allowed”);
 } else if (balance < 5) {
 System.out.println(“Not enough money!”);
 } else {
 balance = balance – 5;
 }
 }

}

We can simplify

Because an if/else block is
actually considered a single
statement we can get rid of some
of these brackets and tidy up

SEAtS: 812900

YOUR QUESTIONS
Summary of Conditional Statements
• if/else condition statement

• When {} is required, when {} is not required

• Nested if/else statement

SEAtS: 812900

Part 5

The Lab

36SEAtS: 812900

37SEAtS: 812900

Marking – Functional Correctness

• 5 (Excellent) - Your code compiles and passes all of the test cases

• 4 (Very Good) - Your code compiles and passes almost all of the test
cases

• 3 (Good) - Your code compiles and passes the majority of the test
cases

• 2 (Acceptable) - Your code compiles and passes some of the text
cases

• 1 (Poor) - Your code does not compile or very few test cases were
passed

• 0 (Inadequate) - No code submitted, not a serious attempt

Automatically Marked

Using Test Harnesses
That we give to you

Lab 1 will show you the
process

(remember no formal
marking until Week 4)

38SEAtS: 812900

Formative – Readability/Coding Style

• Excellent - Code is very easy to read and understand, excellent coding style.

– i.e. Perfect indentation, placement of brackets and camelCase, comments describing
design decisions parameters class and method functions.

• Very Good - Minor flaws in style, with an appropriate number of comments but
lacking some details

• Good - Code is mostly easy to understand with a good programming style with
some improvements possible

• Acceptable - Sound programming style but readability needs to be improved

• Poor - Coding style and readability need significant improvement

• Inadequate - Expected coding style is not used, code is difficult to read

– i.e. Incorrect indentations, the inconsistent placing of brackets, camelCase not used
appropriately and no comments

Given By Demonstrators

Ask for their feedback in the
lab sessions.

We will also discuss
coding style in Week 3.

(remember no formal
marking until Week 4)

39SEAtS: 812900

The Toolbox

• Getting input and output can be a pain in Java.

• So can some other things

• ECS has provided a ‘toolbox’ for you to use.

• This toolbox is a class of useful methods

• Like readStringfromCmd()

• Has some other useful functions, we’ll introduce them as we need them

• But you don’t have to use them if you know what to do already.

40SEAtS: 812900

Getting Input

• Entering this in your code means when the program gets to that line

– The command prompt will ask you for a string

– You enter the string and press enter

– The program keeps going, with the string you typed stored in the variable

Toolbox toolbox = new Toolbox();
String word; //or whatever name you choose
word = toolbox.readStringFromCmd();

SEAtS: 812900

YOUR QUESTIONS
Summary
• How Java Works: The JVM

• Writing a Class in Java (Class, Member Variables, Methods, Statements)
• Magic incantations (The main() method)

• A First Example

– Defining an Account class
– If/else and Boolean operations

• Introducing the Toolbox

Good luck for
the Lab!

