Large scale structure of metric spaces

Jacek Brodzki

University of Southampton
Simple shapes
Large scale structure
How many dimensions?
How many dimensions?
How many dimensions?
Definition

Let X be a non-empty set. A \textit{metric} (or a distance function) on X is a map $d : X \times X \to \mathbb{R}$ which satisfied the following properties:

1. \textit{d is positive definite}: for every $x, y \in X$, $d(x, y) \geq 0$ and $d(x, y) = 0$ if and only if $x = y$.
2. \textit{d is symmetric}: for every $x, y \in X$, $d(x, y) = d(y, x)$.
3. \textit{d satisfies the triangle inequality}: for every $x, y, z \in X$
 $$d(x, z) \leq d(x, y) + d(y, z)$$
Examples of metrics on \mathbb{R}^n

The *Euclidean metric* For $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ in \mathbb{R}^n we define

$$d_2(x, y) = \sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2}$$

The *taxi-cab metric, or the ℓ^1-metric*:

$$d_1(x, y) = |x_1 - y_1| + \cdots + |x_n + y_n|$$

The *supremum metric*:

$$d_\infty(x, y) = \max\{|x_1 - y_1|, \ldots, |x_n + y_n|\}$$
Metric determines shape
Metric determines shape

Jacek Brodzki, School of Mathematics

Large scale structure
Metric determines shape
Let X be a countable set. A Hilbert space canonically associated with X:

$$\ell^2(X) = \left\{ f : X \to \mathbb{C} \mid \sum_{x \in X} |f(x)|^2 < \infty \right\}$$

Canonical orthonormal basis: $\{\delta_x\}$, $f = \sum_{x \in X} f_x \delta_x$, $f_x \in \mathbb{C}$.

Transformations of X give rise to operators on $\ell^2(X)$, e.g., a bijection $\phi : X \to X$ becomes a unitary operator

$$U_\phi : \sum f_x \delta_x \mapsto \sum f_x \delta_{\phi(x)}$$
Graphs provide natural examples of discrete metric spaces:
In a graph, it is natural to define a metric between points to be the length of the *shortest* path between them:
There is no structure theory for discrete metric spaces;
Key features of a space can be determined by studying it from a ‘large distance’
Metrics and function: Network of resistors
A distance between two points can be defined by measuring voltage drop resulting from passing 1 amp of current between them.
The problem of finding the most efficient route between two points depends on the function of the network.

Picture from physorg.com
Central core: Normal patients

Lobes: Type I and Type II diabetes, respectively

Conclusion: There are two essentially distinct forms of the disease, one early onset and the other adult onset.

Mathematics for digital economy

Main themes of the proposal

- Geometry
 - Coarse geometry
 - Coarse cohomology
 - Approximate symmetries

- Data sets
 - Synthetic Data
 - Support Vector Machines
 - Clustering and Kernel Methods

- Smarter planet
 - Linked Data
 - Smart grids
 - Sensor Networks

Jacek Brodzki, School of Mathematics

Large scale structure
The essence of the topological approach is to find the essential core of the system.

Subgraphs consisting of vertices of valency at least: 1,2,3,4.
Basic tools

Definition

Let \((X, d_X)\) and \((Y, d_Y)\) be metric spaces. A map \(\phi : X \to Y\) is called distance-preserving if, and only if,
\[d_Y(\phi(x), \phi(y)) = d_X(x, y)\text{ for all }x, y \in X.\]
An isometry is a distance-preserving bijection between two metric spaces.

Example

\(\phi : \mathbb{R}^2 \to \mathbb{C}\) by \((a, b) \mapsto a + bi.\) This is an isometry if \(\mathbb{R}^2\) is equipped with the euclidean metric.
Coarse maps

Definition

A map \(f : X \rightarrow Y \) of metric spaces is *coarse* if there exist two functions \(\rho_{\pm} : \mathbb{R} \rightarrow \mathbb{R} \), \(\rho_{\pm}(r) \rightarrow \infty \) as \(r \rightarrow \infty \) such that for all \(x, y \in X \)

\[
\rho_{-}(d_X(x, y)) \leq d_Y(f(x), f(y)) \leq \rho_{+}(d_X(x, y))
\]

Coarse maps have a controlled amount of distortion. Maps into spaces of known geometry (e.g., Hilbert spaces) are particularly useful.

The three metrics \(d_{\infty}, d_1, d_2 \) on \(\mathbb{R}^n \) are coarsely equivalent but not isometric.