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Communication schemes
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Source enCOder and DECoder (codec) (CEP 1.4.3.1 – 1.4.3.2)

• Source encoder converts the information to a format that is suitable for transmission.

• Source decoder converts it back again.

• e.g.

– Multiplexing combines several signals into one. e.g. the left and right channels
of stereo audio, the red, green and blue components of component video or the
audio and video of a television signal.

– Low Pass Filtering (LPF) to limit the bandwidth of the signal in order to avoid
aliasing or to reduce the amount of spectrum required. (Lecture 6)

– Analogue-to-Digital Conversion (ADC) if we want to use digital modulation to
transmit an analogue signal. This uses sampling and quantisation. (Lecture 1)
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Source enCOder and DECoder (codec) continued

• More examples of source codec functions

– Encryption to protect the information from being decoded by an unauthorised
receiver. Decoding is performed using a key that is built in to authorised receivers
or SIM cards.

– Watermarking to prove that the information has not been tampered with or sent
from an unauthorised transmitter. The source decoder compares the received
watermark with one that it has built in.

– Compression to reduce the amount of information we have to transmit.
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Information and redundancy

• Any message can be considered to contain two things:

– Information, which cannot be removed without harming the integrity of the
message.

– Redundancy, which can be removed without harming the integrity of the message.

• For example, suppose you wanted your friend to know when your evening class
starts. You could say “My evening class starts at 7pm”. Here, the “pm” part is
redundant. It wouldn’t be an evening class if it started at 7am. The message can be
shortened to “My evening class starts at 7” without losing any of the information.
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Compression

• Compression is a source coding technique for reducing the length of a message
required to convey some information:

– Lossless compression removes only redundancy from the message. e.g. zip file
to compress a computer program.

– Lossy compression also removes some information, but (hopefully) only the least
important information. e.g. jpeg file to compress an image.
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Quantifying information

• The amount of information in a message can be quantified in bits.

• For example, a message that conveys the result of flipping a coin contains k = 1
bit of information. This is because there are N = 2 (equally likely) outcomes of
flipping a coin (heads and tails) and N = 2 values that k = log2(N) = 1 bit can
have (0 and 1).

• If somebody asked me which season I was born in, my reply would contain k = 2 bits
of information. This is because there are N = 4 (equally likely) replies that I could
give (Winter, Spring, Summer, Autumn) and N = 4 values that k = log2(N) = 2
bits can have (00, 01, 10 and 11).

• A message that conveys the result of throwing an N = 6-sided dice would contain
k = log2(N) = 2.59 bits of information. A message doesn’t have to contain an
integer number of bits of information!
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Quantifying information cont

• Suppose a message is selected from a
set of N possibilities. The number of
bits of information ki that is conveyed
by the ith possibility is related to its
probability of being selected pi according
to ki = log2(1/pi)

• In the case of the N = 6-sided dice,
each possibility (1,2,3,4,5,6) has the
same probability pi = 1/6. When every
possibility has the same probability, we
get 1/pi = N and ki = log2(N) as on
the previous slide.

• When two dice are rolled, different
sums occur with different probabilities...

i pi ki = log2(1/pi)
2 1/36 5.17
3 2/36 4.17
4 3/36 3.59
5 4/36 3.17
6 5/36 2.85
7 6/36 2.59
8 5/36 2.85
9 4/36 3.17

10 3/36 3.59
11 2/36 4.17
12 1/36 5.17
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Entropy

The entropy H of a source is equal to the expected (i.e. average) information content
of its messages.

H =
N∑

i=1

piki =
N∑

i=1

pi log2(1/pi)

The entropy of a six-sided dice is H = 2.59 bits.

The entropy of the sum of two-six sided dice is H = 3.27 bits.

Note that this is less than the entropy of two six-sided dice, which is H = 2× 2.59 =
5.18 bits.

It makes sense for the sum of the two dice rolls to contain less information than the
dice rolls separately. This is because the sum could be calculated if you knew the two
dice rolls, but the two dice rolls couldn’t always be determined if you only knew the
sum.

It is impossible to losslessly compress messages from a particular source using an
average number of bits that is less than the entropy.
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Fixed length coding

• Similar to Pulse Coded
Modulation (PCM), fixed
length coding represents each
of the N message possibilities i
with a different codeword ci.

• In order for the codewords to
be unique, they need to have a
length of L = dlog2(N)e.

• The coding efficiency is given by
R = H/L and can never be
greater than 1.

For the sum of two dice example...
i pi ki = log2(1/pi) ci

2 1/36 5.17 1110
3 2/36 4.17 1101
4 3/36 3.59 1100
5 4/36 3.17 1000
6 5/36 2.85 0100
7 6/36 2.59 0000
8 5/36 2.85 0010
9 4/36 3.17 0001

10 3/36 3.59 0011
11 2/36 4.17 1011
12 1/36 5.17 0111

H = 3.27, L = 4, R = 0.82.
The sequence of sums [2,7,4,8,7,8,3,7,12]
is encoded as the sequence of 36 bits
111000001100001000000010110100000111.

L7/12: p9/20 9



ELEC1011 Communications: Source Coding Rob Maunder

Variable length encoding

• Variable length coding represents
each of the message possibilities
i with different codewords ci

having various lengths li.

• No codeword is allowed to be a
prefix of any other.

• The average codeword length is
given by L =

∑N
i=1 pili.

• The coding efficiency is given by
R = H/L and can never be
greater than 1.

For the sum of two dice example...
i pi ki = log2(1/pi) ci li
2 1/36 5.17 10000 5
3 2/36 4.17 0110 4
4 3/36 3.59 1001 4
5 4/36 3.17 001 3
6 5/36 2.85 101 3
7 6/36 2.59 111 3
8 5/36 2.85 110 3
9 4/36 3.17 010 3

10 3/36 3.59 000 3
11 2/36 4.17 0111 4
12 1/36 5.17 10001 5

H = 3.27, L = 3.31, R = 0.99.
The sequence of sums [2,7,4,8,7,8,3,7,12]
is encoded as the sequence of 33 bits
100001111001110111110011011110001.
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Variable length decoding

• The codebook on the previous slide can be represented by this binary tree.
0

1

2 12

3 411

5 6 78910

• The sequence of bits 100001111001110111110011011110001 can be decoded by
repeatedly traversing the binary tree from the root node.

• When a leaf node is reached, a sum of two dice is identified and we start at the root
node again.

• We get the same sequence of sums [2,7,4,8,7,8,3,7,12] that we started with.
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Huffman coding

• The example on the previous slides is a Huffman code, which is a special type of
variable length code.

• Huffman codewords are specially allocated in order to minimise the average
codeword length L and therefore maximise the coding efficiency R.

• Short codewords are used to represent frequently occurring message possibilities
and long codewords are used to represent rare ones.

• More specifically, the message possibility i is allocated a codeword ci having an
integer-valued length li that is typically close to the possibility’s information content
ki.

• The design of Huffman codes is not within the scope of ELEC1011, but the use of
them is.
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Arithmetic coding

• The coding efficiency of Huffman coding is limited because it has to use an integer
number of bits li to represent the message possibility i.

• It would have an efficiency of R = 1 if it could use ki number of bits to represent
the message possibility i.

• This motivates arithmetic coding, which represents a sequence of messages together,
rather than individually.
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Arithmetic encoding step 1

• Draw a number line that goes from 0 to 1.

• Divide the number line into N portions, where the ith portion has a width equal to
the probability of the ith message possibility pi.
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Arithmetic encoding step 2

• Repeatedly select the portion of the number line that
represents the next message in the sequence and
divide that portion using the message probabilities.

• Once a portion has been selected for the last message
in the sequence, a numerical range has been identified.

• The sequence of messages [2,7,4,8,7,8,3,7,12] gives
the number range 0.0122125384 to 0.0122125387.
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Arithmetic encoding step 3

• Find the shortest binary fraction that represents a number in the identified decimal
range.

• 0.0000001100100000010111000110011 is the shortest binary fraction in the
decimal range 0.0122125384 to 0.0122125387.

• This gives 1
27 + 1

28 + 1
211 + 1

218 + 1
220 + 1

221 + 1
222 + 1

226 + 1
227 + 1

230 + 1
231 = 0.0122125386.

• Since the binary fraction will always start with “0.” we only transmit the bits after
the binary point.

• The sequence of messages [2,7,4,8,7,8,3,7,12] is represented by 31 bits using an
arithmetic code, 33 bits using a Huffman code and 36 bits using a fixed length
code.
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Arithmetic encoding step 3 cont

We can determine the shortest binary fraction within the
desired range by building a binary tree as follows.
Starting at the root node:

• if the result on the right-hand branch is within the
desired range then output a bit value of 1 and stop,

• else if the result on the right-hand branch is below
the desired range then output a bit value of 1 and
follow the right-hand branch,

• else output a bit value of 0 and follow the left-hand
branch.

0.000000000 0.250000000

0.000000000 0.125000000

0.000000000 0.062500000

0.000000000 0.031250000

0.000000000 0.015625000

0.000000000 0.007812500

0.0078125000 0.0117187500

0.0117187500 0.0136718750

0.0117187500 0.0126953125

0.0117187500 0.0122070313

0.0122070313 0.0124511719

0.0122070313 0.0123291016

0.0122070313 0.0122680664

0.0122070313 0.0122375488

0.0122070313 0.0122222900

0.0122070313 0.0122146606

0.0122070313 0.0122108459

0.0122108459 0.0122127533

0.0122108459 0.0122117996

0.0122117996 0.0122122765

0.0122122765 0.0122125149

0.0122125149 0.0122126341

0.0122125149 0.0122125745

0.0122125149 0.0122125447

0.0122125149 0.0122125298

0.0122125298 0.0122125372

0.0122125372 0.0122125410

0.0122125372 0.0122125391

0.0122125372 0.0122125382

0.0122125382 0.0122125386

0.000000000 0.500000000
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add 1
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don’t add 1
2p

+ 1
231 ?

+ 1
21 ?

+ 1
22 ?

+ 1
23 ?

+ 1
24 ?

+ 1
25 ?

+ 1
26 ?

+ 1
27 ?

+ 1
28 ?

+ 1
29 ?

+ 1
220 ?

+ 1
219 ?

+ 1
218 ?

+ 1
217 ?

+ 1
216 ?

+ 1
215 ?

+ 1
214 ?

+ 1
213 ?

+ 1
212 ?

+ 1
211 ?

+ 1
210 ?

+ 1
221 ?

+ 1
222 ?

+ 1
223 ?

+ 1
224 ?

+ 1
225 ?

+ 1
226 ?

+ 1
227 ?

+ 1
228 ?

+ 1
229 ?

+ 1
230 ?
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Arithmetic decoding

Step 1 Convert the received binary sequence into a decimal fraction.

Step 2 Divide a number line from 0 to 1 into portions according to the message
probabilities.

Step 3 Repeatedly select the portion having the range into which the decimal fraction
falls and divide the portion according to the message probabilities. Output the
messages that correspond to the selected portions and stop once the required
number of messages have been output (this assumes that the required number is
known to the receiver).
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Exercise
Four friends, Hamilton, Button, Schumacher and Alonso have a race every fortnight.
Hamilton tends to win most often and Alonso tends to win least often, as specified
by the probability pi provided for each racer i in the table below. Some source coding
schemes have been devised to transmit the victor of a sequence of races.

i pi cFLC
i cHuff

i

Hamilton 0.5 00 0
Button 0.25 01 10
Schumacher 0.125 10 110
Alonso 0.125 11 111

1. Determine the amount of information ki that is conveyed by messages saying that
each racer i has won.

2. Determine the entropy H of messages saying who has won.

3. Determine the coding efficiencies R associated with the fixed length codewords
cFLC

i and the Huffman codewords cHuff
i .
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Exercise continued

4. Why does the Huffman code perform so well in this case?

5. Determine the bit sequences that result when the sequence of victors
[Schumacher,Hamilton,Button,Hamilton] is represented using the fixed length
codewords cFLC

i , the Huffman codewords cHuff
i and an arithmetic code.

6. Determine the sequence of victors that is represented by the bit sequence 00110001,
which was obtained using the fixed length codewords cFLC

i .

7. Draw a binary tree for the Huffman codewords cHuff
i and use it to determine the

sequence of victors that is represented by the bit sequence 11111000.

8. Determine the sequence of four victors that is represented by the bit sequence
010111, which was obtained using an arithmetic code.
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