
ELEC6021 An Introduction to MATLAB: Session 1
Lecturer: Rob Maunder rm@ecs.soton.ac.uk

Short for “Matrix Laboratory”, MATLAB is a proprietary numerical computing
environment. To perform numerical calculations MATLAB uses a scripting or
interpreted programming language, meaning that the source code is not compiled such as
in the C programming language but rather is interpreted each time the program is
executed. MATLAB is commonly used in industry and academia for its ease of
programming and vast libraries of functions. This session will guide you through the
basics of the programming language and does not cover everything. On Windows
systems, MATLAB can be started through the Start button. Once opened, the MATLAB
environment should look similar to Figure 1.

Figure 1 The MATLAB environment.

1. Finding your way around

TASK 1 Identify components of the environment:

 Command History Window
 Command Window
 Start Button and Launch Pad
 Help Browser
 Current Directory Browser
 Workspace Browser

1

mailto:jsw@ecs.soton.ac.uk

TASK 2 Documentation on MATLAB is readily available via the Help Browser, the
Internet, or the help command. At the Command Window type:

help help

Press Enter to execute the command. This command will display text in the Command
Window explaining what help does and how to use it. The most common use of the
help is to find out what a certain command or function does in MATLAB.

2. The Basics

TASK 3 Try some simple operations. For scalar addition, subtraction, multiplication,
and division type in the Command Window:

6+2
9-5
46*0.5
8/5

Notice how MATLAB always saves the result in a variable called ans. Good
programming practice in MATLAB is to never use ans as a variable name. If a value is
assigned to a variable ans is not used. Try:

a = 2
b = 5;

QUESTION What does the semicolon do?

MATLAB also has native support for complex numbers, both i and j have the value of
the square root of –1. So be careful when assigning values to either of these variables, as
that will override the default value. To enter a complex number just type:

4.9+j*5.6
a+j*b

3. Matrix Manipulation

MATLAB’s biggest advantage is its relative ease of matrix manipulations. In other
programming languages matrices are dealt with by using loops.

TASK 4 Create an array (also referred to as a vector); type in the Command Window:

a = [16 4 67 48 9 90]

2

As shorthand for sequence of numbers you can type:

a = 1:10

This will give you a sequence of numbers from 1 to 10 with unit interval. To change the
interval type:

a = 1:2:10
a = 1.45:0.1:2.3
a = 0:pi/4:pi

TASK 5 Now to enter matrices, enter Dürer’s matrix. The semicolon marks the end of
the row.

A=[16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

This matrix is a famous magic square where all numbers in a row, column, or diagonal
sum to 34. NB. MATLAB has a function magic for generating magic squares. Use the
sum function by typing:

sum(A)

This is a row vector of the sums of the columns of A. To transpose A to get the sum of
rows type:

A’
sum(A’)’

A column vector containing the row sums is displayed. Sum the diagonal elements with:

sum(diag(A))

Using the help command, look up how the fliplr function works to sum the anti-
diagonal elements of A. Now, type the following:

A(1,4)

Subscripts This is specific indexing, such that it returns the value of row 1 column 4 of
the matrix A. But it is essential that you master the colon, since this allows MATLAB to
use its own internal routines which run much faster than loops using specific indexing
and gives rise to much more readable code.

A(1:n,k)

displays the first n elements of the k-th column of A. So:

3

sum(A(1:4,4))

computes the sum of the 4th column. The colon by itself refers to all the elements in a
row or column.

sum(A(:,end))

computes the sum of the elements of the last column of A. To reorder the columns in A
type:

A(:,[4 3 2 1])

or

A(:,4:-1:1)

Both code statements say that for each of the rows of A reorder the elements in the order
4 3 2 1.

4. Array and Matrix Operators

In other programming languages matrix maths operations are commonly performed using
loops. But in MATLAB operations are written intuitively. The operators as you would
expect are shown in Table 1

Table 1 Array and Matrix Arithmetic Operators

Operator Matrix Array (element-by-
element)

Addition + +
Subtraction - -
Multiplication * .*
Right Division / ./
Left Division \ .\
Power ^ .^
Transpose ‘ .‘
Brackets (are used
to specify the order
of evaluation)

() ()

TASK 6 Type the following:

x = (0:0.1:1)*pi
y = linspace(0,pi,11)

This generates two identical vectors. Try some scalar operations like:

4

z = x-2
w = z-x

Vectors in MATLAB are either single row or single column matrices. Create the vector c
and find the outer and inner products by typing:

c = 1:5
c’*c
c*c’

Now, verify that:

W = rand(4)
b = rand(4,1)
x = W\b

solves the set of matrix equations Wx = b.

TASK 7 For array manipulations MATLAB also offers element-by-element operators to
carry out common tasks shown in Table 1. Again with vector c.

c = 1:5
c’*c
c’.*c

Don’t panic! The error is a common error you may come across when using array
operators. Instead use the following code:

c.*c

Notice the difference between matrix and array operators?

5. Functions

Functions perform some processing on a number of inputs, in order to provide a number
of outputs. So far, we've seen a few examples of functions, namely sum, diag,
linspace and rand. Matlab has lots of built-in functions, which allow you to do all
sorts of things.

TASK 8 For example the rand function can take two inputs and returns one output. It
outputs a matrix of random numbers, where the first input specifies how many rows the
matrix should have and the second input specifies how many columns. You can try this
out using the command

rand(3,4)

5

which should output a 3×4 matrix of random numbers.

The rand function can also take only one input. In this case, it will output a square
matrix of random numbers, having dimensions that are specified by the input. You can
see this for yourself by inputting the command

rand(3)

Also, the rand function can take no inputs at all! In this case, it will output a single
random number. Try this by inputting the command

rand

TASK 9 The eig function is an example of a function that can return two outputs. It
outputs the eigenvalues and eigenvectors of the input matrix. You can try this out for
yourself using the commands

X=rand(3)
[V,D]=eig(X)

You should find that X×V = V×D. Note that a function's outputs can be stored in a
variable by using the equals operator. When there is more than one output, the variables
should be listed inside square brackets, like in the example above.

If you're ever wondering what one of Matlab's built-in functions does, you can find out
using the help command. Try this for the rand function by typing

help rand

TASK 10 Use Matlab's help command to find out about each of the other functions
we've used so far.

6. Using Files

TASK 11 Outside of MATLAB, use a text editor (such as Notepad) to create a file called
fred.dat containing a data array looking like:

1 2 3 4
5 6 7 8
8 7 6 5
4 3 2 1

Save the file in the MATLAB work directory and then enter in the MATLAB Command
Window:

6

load fred.dat

Look at the variable fred. There are many commands and functions for saving and
retrieving data such as fread, fprintf, save, etc.

TASK 12 So far, you have been typing commands into the Command Window. This is
not a good way to realise larger programs. Scripts and functions can be stored in files
with a .m extension. You can create these using the MATLAB editor, which is started
from File-> New-> M-File or by clicking the New M-File button found on the top left-
hand corner. Code written as a script, when executed is run as if typing each line into the
Command Window yourself.

In the Editor Window type the following previous example code:

c = 1:5 %Generates a vector of numbers 1 to 5
c’*c %Inner product by matrix operators
c’.*c %This throws an error due to dimension mismatch
c.*c %Multiply element-by-element

Note that the % sign in MATLAB is for inserting comments (these are ignored by the
interpreter). It is good programming practice to write comments so that others and you
are aware of what the code does. Save the file with the name script1.m in the
MATLAB work directory. To call the script, click the run button on the Editor Window
or type the script's name in the Command Window, in this case script1.

TASK 13 From now on type code into M-files as this makes life easier, unless otherwise
instructed. If Matlab does not have a built-in function to do what you want, you can write
your own function! To create a function in MATLAB, you write an M-file having a first
line like:

function [y, z] = funcname(x, i)

The word function is a MATLAB keyword that declares a function. The variables in
square brackets [] are the variables returned by the function. Brackets can be omitted if
there is only one return variable. The variables in round brackets () are input argument
variables passed to the function and funcname is the function’s name used to call it,
which should be the same as that of the M-file. So, a function called function1 should
be saved in the M-file function1.m.

Differences between scripts and functions:
1. Scripts are lines of code that you would type into the Command Window, so

variables are created in your workspace.
2. Functions have local variables (unless otherwise declared global by global), so

they are destroyed once the function is returned.

7

Create a function called logicarr that uses logical arrays. These are useful for
writing efficient codes. You can gain understanding of what they are and how they work
by studying the following sequence of commands and the plots generated. Their
meanings are later described in Table 2.

function z = logicarr(x,y)

figure(1);
plot(x,y);
z = (y >= 0).*y;
z = z + 0.5*(y<0);
z = (x <= 3*pi/2).*z;
figure(2);
plot(x,z);

At the Command Window create the arrays:

x = linspace(0,2*pi,30);
y = sin(x);

And call the function:

logicarr(x,y);

By not assigning the function to a variable the returned array is assigned to ans.

7. Plotting Graphs

A major benefit of the MATLAB environment is its useful graph plotting capabilities.

TASK 14 Creating a plot. Use the colon operator to make a vector having values in the
range (0, 2π) and plot the sine of this vector.

x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y);

Remember the semicolons stop results printing to screen which makes the program run
faster. Now label the axes and add a title.

xlabel(’x = 0:2\pi’);
ylabel(’y = sin(x)’);
title(’Plot of the sine function’,’FontSize’,12);

Find out how to print the figure.

8

TASK 15 Multiple data sets on one graph. Create another two functions dependent on x
and put them in the plot function:

y2 = sin(x-0.25);
y3 = sin(x-0.5);
plot(x,y,x,y2,x,y3);

To make it easier to identify the different lines use a legend:

legend(’sin(x)’,’sin(x-0.25)’,’sin(x-0.5)’);

TASK 16 Specify line colours and styles

The plot function allows for many customisations such as line colours, line styles, etc.
Use the help command to understand what the following example does.

x1 = 0:pi/100:2*pi;
x2 = 0:pi/10:2*pi;
plot(x1,sin(x1),’r:’,x2,sin(x2),’b+’);

TASK 17 Imaginary and complex data

When plot is used on complex data the imaginary part is ignored, except when plot is
given a single complex argument. For this case the real part is plotted versus the
imaginary part. So plot(Z) is equivalent to plot(real(Z),imag(Z)).

t = 0:pi/10:2*pi;
plot(exp(j*t),’-o’);
axis equal

TASK 18 Adding multiple graphs to a plot

By using the following command you can add more graphs to a plot as shown in the
proceeding example.

hold on

This example code overlaps a contour plot with a psuedo colour plot:

[x,y,z] = peaks;
pcolor(x,y,z)
shading interp
hold on
contour(x, y, z, 20,’k’)
hold off

TASK 19 Figure windows

9

To have more than one figure use the figure function every time you wish to have
another Figure Window before plotting it. To create another figure but control its figure
number, use:

x1 = 0:pi/100:2*pi
x2 = 0:pi/10:2*pi
figure(1)
plot(x1,sin(x1),’r:’);
figure(2)
plot(x2, sin(x2),’b+’);

TASK 20 Multiple plots in one figure

Use the subplot function for this:

t=0:pi/10:2*pi;
[X,Y,Z] = cylinder(4*cos(t));
subplot(2,2,1);
mesh(X);
subplot(2,2,2);
mesh(Y);
subplot(2,2,3);
mesh(Z);
subplot(2,2,4);
mesh(X,Y,Z);

grid lines can be set using:

grid on
grid off

8. Flow Control

TASK 21 User input and formatted output into your programs. To prompt a user for an
input:

z = input(’enter a value for z’);

The user can input (for instance) [1,2,3; 4,5,6] which is assigned to the variable z. For
formatted output look up how the disp will generate output more readable than the
default and fprintf will produce user-specified formatted output.

TASK 22 The if statement in MATLAB follows the format of:

if condition 1

10

statement 1
elseif condition 2

statement 2
else

statement 3
end

The conditions are expressions made from using logical and relational operators as
described in Table 2 and Table 3. Try this example code:

temperature = input(’enter a temperature ’)
if temperature >= 90
 disp(’It’s getting hot’);
elseif temperature < 90 & temperature > 50
 disp(’This is just right’);
else
 disp(’I think I will get my coat’);
end

Table 2 Relational Operators

Operation Operator
Equal to ==
Not equal to ~=
Less than <
Greater than >
Less than or
equal

<=

Greater than or
equal

>=

Table 3 Logical Operators

Operator Description
&& Returns logical 1 (true) if both inputs

evaluate to true, and logical 0 (false)
otherwise.

|| Returns logical 1 (true) if either input, or
both, evaluate to true, and logical 0 (false)
otherwise.

To test for equality between scalars if A == B works, but for matrices tests where the
two matrices are equal, resulting in a matrix of zeros or ones. The proper way to test for
equality between two variables is if isequal(A,B). Functions that are helpful for
reducing the results of matrix comparisons to scalar conditions for use with if are:
isequal and isempty.

TASK 23 The switch statement follows the format below.

11

switch switch_expr
 case case_expr1
 statement 1
 case case_expr2
 statement 2
 otherwise
 statement 3
end

The temperature comparator can also be described by:

switch (1)
 case temperature >= 90
 disp(’It’’s getting hot’);
 case temperature > 50
 disp(’This is just right’);
 otherwise
 disp(’I think I’’ll get my coat’);
end

Only the first matching case is executed. There must always be an end to match the
switch.

TASK 24 The for loop. This example repeats a statement a predetermined number of
times:

function factx = fact(x)
%this function accepts a scalar input and return its
%factorial
a=1;
for k=1:x
 a=a*k;
end
factx=a;

Note the matching end at the end. N.B. Do not use for on all the elements of an array
and do not use loops when you can use the colon notation. MATLAB is an interpreted
language, not compiled like C and consequently long for loops and complex logic is
generally slow to execute. Check that this function operates correctly when you call it
from the Command Window.

TASK 25 The while loop repeats a group of statements an indefinite number of times
under the control of a logical condition. Here is a complete program that finds the roots
of a polynomial by interval bisection.

a=0; fa=-Inf;

12

b=3;fb=Inf;
while b-a > eps*b
 x=(a+b)/2;
 fx=xˆ3-2*x-5;
 if(sign(fx) == sign(fa))
 a=x; fa=fx;
 else
 b=x;fb=fx;
 end
end
x

Two statements that you should also be aware sometimes useful for writing loops are the
continue and break statements. The continue statement passes on to the next
iteration of a for or while loop. The break statement is an early exit from a for or
while loop.

9. Further Reading

There are many books on MATLAB and how to use MATLAB certain fields. The
University’s library has quite a few. There is also a vast amount of documentation online
on MATLAB functions.

A first place to look online would be:
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html

or a popular starting point if the help command is not adequate is www.google.com.

13

http://www.google.com/
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html

	1.	Finding your way around
	2.	The Basics
	3.	Matrix Manipulation
	4.	Array and Matrix Operators
	5.	Functions
	6.	Using Files
	7.	Plotting Graphs
	8.	Flow Control
	9.	Further Reading

