Question

Suppose that $\{S_1, \dots, S_n\}$ is a collection of sets, not necessarily measurable, satisfying $d(S_i, S_j) > 0$ for $i \neq j$. Extend theorem 2.8 to show that $m^*\left(\bigcup_{i=1}^n S_i\right) = \sum_{i=1}^n m^*(S_i)$

Answer

The result is true for n = 2 by theorem 2.8. Suppose true for n = k, now consider S_{k+1} . Let $d_i = d(S_i, S_{k+1}) > 0$. Let $d = \min_{1 \le i \le k} d_i > 0$. Then $d(S_{k+1}, \bigcup_{i=1}^k) = d > 0$. Hence by theorem 2.8 $m^*(S_{k+1} \cup \bigcup_{i=1}^k S_i) = m^*(S_{k+1}) + \sum_{i=1}^k S_i$. Hence the result.