QUESTION

Find the most general solution of the Black-Scholes equation that has the special form $V(S, t)=A(t) B(S)$. (Hint: separate the variables).
ANSWER
$V(S, t)=A(t) B(t)$
Substituting this into Black-Scholes:

$$
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+r S \frac{\partial V}{\partial S}-r v=0
$$

$\frac{\partial V}{\partial t}=\frac{d A}{d t} B(S)$
$\frac{\partial V}{d}=A(t) \frac{d B}{d S}$
$\frac{\partial S}{\partial S}=A(t) \frac{B}{d S}$
$\frac{\partial^{2} V}{\partial S^{2}}=A(t) \frac{d^{2} B}{d S^{2}}$.
Therefore

$$
B \frac{d A}{d t}+\frac{1}{2} \sigma^{2} S^{2} A \frac{d^{2} B}{d S^{2}}+r S A \frac{d B}{d S}-r A B=0
$$

Goal: seperate all the t dependence to one side and all the S dependence to the other side.
To do this divide through by $A B$ and rearrenge:

$$
\underbrace{\frac{1}{A} \frac{d A}{d t}-r}_{\text {only } t \text { dependence (or const.) }}=\underbrace{-\frac{1}{2} \frac{\sigma^{2} S^{2}}{B} \frac{d^{2} B}{d S^{2}}-\frac{r S}{B} \frac{d B}{d S}}_{\text {only } S \text { dependence }}
$$

The only way this can happen is if $\mathrm{LHS}=\mathrm{RHS}=$ const. Let that constant be C.
Therefore

$$
\begin{align*}
\frac{1}{A} \frac{d A}{d t}-r & =C \tag{1}\\
-\frac{1}{2} \frac{\sigma^{2} S^{2}}{B} \frac{d^{2} B}{d S^{2}}-\frac{r S}{B} \frac{d B}{d S} & =C \tag{2}
\end{align*}
$$

Solve(1):

$$
\begin{aligned}
\frac{1}{A} \frac{d A}{d t} & =r+c \\
\Rightarrow \int \frac{d A}{A} & =\int(r+c) d t \\
\Rightarrow \ln A & =(r+c) t+\text { const. } \\
\Rightarrow A & =A(0) e^{(r+c) t}
\end{aligned}
$$

Solve(2):

$$
\frac{\sigma^{2}}{2} S^{2} \frac{d^{2} B}{d S^{2}}+r S \frac{d B}{d S}+C B=0
$$

Euler-equation: try solutions $A=S^{n}$ with n to be found by substitution.

$$
\frac{\sigma^{2}}{2} S^{2} n(n-1) S^{n-2}+r S n S^{n-1}+C S^{n}=0
$$

Dividing by S^{n}

$$
\begin{gathered}
\frac{\sigma^{2}}{2} n(n-1)+r n+C=0 \\
\frac{\sigma^{2}}{2} n^{2}+\left(r-\frac{\sigma^{2}}{2}\right) n+c=0 \\
n=\frac{\left(\frac{\sigma^{2}}{2}-r\right) \pm \sqrt{\left(r-\frac{\sigma^{2}}{2}\right)^{2}-4 \frac{\sigma^{2}}{2} C}}{\sigma^{2}}
\end{gathered}
$$

Call these values n^{+}, n^{-}. Then the general solution is

$$
B(S)=\alpha r^{n^{+}}+\beta r^{n^{-}}
$$

α, β const. Therefore the most general solution to Black-Scholes is

$$
\begin{aligned}
V=A(t) B(S)=A(0) e^{(r+c) t}\left[\alpha r^{n^{+}}+\beta r^{n^{-}}\right] & \\
& =e^{(r+c) t}\left(\gamma r^{n^{+}}+\delta r^{n^{-}}\right)
\end{aligned}
$$

$\gamma, \delta=$ arbitrary constants to be determined by boundary data. (C is determined in the same way.)

