QUESTION

(a) State the Duality Theorem of linear programming and use it to prove the Theorem of Complementary Slackness.
(b) Use duality theory to determine whether $x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=4$, is an optimal solution of the linear programming problem

$$
\begin{array}{ll}
\operatorname{maximize} & z=4 x_{1}+x_{2}+7 x_{3}+9 x_{4} \\
\text { subject to } & x_{1} \geq, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0 \\
& 6 x_{1}+8 x_{2}+3 x_{3}+x_{4} \leq 15 \\
& 3 x_{1}+2 x_{2}+7 x_{3}+4 x_{4} \leq 18 \\
& 5 x_{1}+5 x_{2}+8 x_{3}+3 x_{4}=17
\end{array}
$$

(c) For the linear programming problem

$$
\begin{array}{lll}
\operatorname{maximize} & \sum_{j=1}^{n} c_{j} x_{j} & \\
\text { subject to } & x_{j} \geq 0 & j=1, \ldots, n \\
& \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & i=1, \ldots, m
\end{array}
$$

the optimal value of the objective function is z^{*} and $y_{1}^{*}, \ldots, y_{m}^{*}$ are optimal values of the dual variables. Let $z^{* *}$ denote the optimal value of the objective function for the linear programming problem

$$
\begin{array}{lll}
\operatorname{maximize} & \sum_{j=1}^{n} c_{j} x_{j} & \\
\text { subject to } & x_{j} \geq 0 & j=1, \ldots, n \\
& \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}+\delta_{i} & i=1, \ldots, m \\
& & z^{* *} \leq z^{*}+\sum_{i=1}^{m} \delta_{i} y_{i}^{*}
\end{array}
$$

You may use the Duality Theorem in your proof.

ANSWER

(a) The duality theorem states that

- if the primal problem has an optimal solution, then so has the dual, and $z_{p}=z_{D}$;
- if the primal problem is unbounded, then the dual is infeasible;
- if the primal problem is infeasible, then the dual is either infeasible or unbounded.

Consider the following primal and dual problems

$$
\begin{array}{llll}
\text { Maximize } & z_{P}=\mathbf{c}^{T} \mathbf{x} & \text { Minimize } & z_{D}=\mathbf{b}^{T} \mathbf{y} \\
\text { subject to } & \mathbf{x} \geq \mathbf{0}, \mathbf{s} \geq \mathbf{0} & \text { subject to } & \mathbf{y} \geq \mathbf{0}, \mathbf{t} \geq \mathbf{0} \\
& A \mathbf{x}+\mathbf{s}=\mathbf{b} & & A^{T} \mathbf{y}-\mathbf{t}=\mathbf{c}
\end{array}
$$

For feasible solutions of the primal and dual, we have

$$
Z_{P}=\mathbf{c}^{T} \mathbf{x}=\left(\mathbf{y}^{T} A-\mathbf{t}^{T}\right) \mathbf{x}=\mathbf{y}^{T}(\mathbf{b}-\mathbf{s})-\mathbf{t}^{T} x=z_{D}-\mathbf{y}^{T} \mathbf{s}-\mathbf{t}^{T} \mathbf{x}
$$

For an optimal solution of the primal and dual, $z_{p}=z_{D}$ so

$$
\mathbf{y}^{T} \mathbf{s}+\mathbf{t}^{T} \mathbf{x}=0
$$

Since variables are non negative this implies that

$$
\begin{aligned}
& y_{i} s_{i}=0 i=1, \ldots m \\
& t_{j} x_{j}=0 j=1, \ldots, n
\end{aligned}
$$

(b) The solution $x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=4$ yeilds $z=37 s_{1}=3, s_{2}=$ 0.

The dual problem is

$$
\begin{array}{ll}
\operatorname{minimize} & z_{D}=15 y_{1}+18 y_{2}+17 y_{3} \\
\text { subject to } & y_{1} \geq 0, y_{2} \geq 0 \\
& 6 y_{1}+3 y_{2}+5 y_{3} \geq 4 \\
& 8 y_{1}+3 y_{2}+5 y_{3} \geq 1 \\
3 y_{1}+7 y_{2}+8 y_{3} \geq 7 & \\
& y_{1}+4 y_{2}+3 y_{3} \geq 9
\end{array}
$$

If the given solution is optimal, then we can use the complementary slackness conditions.
$y_{1} s_{1}=0$ implies $y_{1}=0$
$x_{2} t_{2}=0$ implies $t_{2}=0$
$x_{4} t_{4}=0$ implies $t_{4}=0$
Thus,

$$
\begin{aligned}
& 2 y_{2}+5 y_{3}=1 \\
& 4 y_{2}+3 y_{3}=9
\end{aligned}
$$

$$
y_{2}=3, y_{3}=-1
$$

and

$$
t_{1}=0, t_{3}=6
$$

Therefore, the solution is feasible.
Since $z_{D}=37=z$ the proposed solution is optimal.
(c) Using matrix notation, the relevant problems are
(P) Maximize $\mathbf{c}^{T} \mathbf{x}$
(P) Maximize $\mathbf{c}^{T} \mathbf{x}$
subject to $\quad \mathbf{x} \geq 0$
$A \mathbf{x} \leq \mathbf{b}$

$$
\begin{array}{ll}
\text { subject to } & \mathbf{x} \geq \mathbf{0} \\
& A \mathbf{x} \leq \mathbf{b}+\delta
\end{array}
$$

and the dual of (P) is
(D) Minimize $\mathbf{b}^{T} \mathbf{y}$
subject to $\quad \mathbf{y} \geq \mathbf{0}$
$A^{T} \mathbf{y} \geq \mathbf{c}$
From the duality theorem,

$$
z *=\mathbf{b}^{T} \mathbf{y} *=(\mathbf{y} *) \mathbf{b}
$$

Let $\mathbf{x}=\mathbf{x} *$ be an optimal solution of $\left(\mathrm{P}^{\prime}\right)$. Then

$$
x * *=\mathbf{c}^{T} \mathbf{x} * \leq(y *)^{T} A x * \leq(y *)^{T}(\mathbf{b}+\delta)=z *+\sum_{i=1}^{m} s_{i} y_{i} *
$$

