QUESTION

- (a) State the Duality Theorem of linear programming and use it to prove the Theorem of Complementary Slackness.
- (b) Use duality theory to determine whether $x_1 = 0$, $x_2 = 1$, $x_3 = 0$, $x_4 = 4$, is an optimal solution of the linear programming problem

maximize $z = 4x_1 + x_2 + 7x_3 + 9x_4$ subject to $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$ $6x_1 + 8x_2 + 3x_3 + x_4 \le 15$ $3x_1 + 2x_2 + 7x_3 + 4x_4 \le 18$ $5x_1 + 5x_2 + 8x_3 + 3x_4 = 17.$

(c) For the linear programming problem

maximize
$$\sum_{j=1}^{n} c_j x_j$$

subject to $x_j \ge 0$ $j = 1, \dots, n$
 $\sum_{j=1}^{n} a_{ij} x_j \le b_i$ $i = 1, \dots, m$,

the optimal value of the objective function is z^* and y_1^*, \ldots, y_m^* are optimal values of the dual variables. Let z^{**} denote the optimal value of the objective function for the linear programming problem

maximize
$$\sum_{j=1}^{n} c_j x_j$$

subject to $x_j \ge 0$ $j = 1, \dots, n$
 $\sum_{j=1}^{n} a_{ij} x_j \le b_i + \delta_i$ $i = 1, \dots, m.$
 $z^{**} \le z^* + \sum_{i=1}^{m} \delta_i y_i^*.$

You may use the Duality Theorem in your proof.

ANSWER

(a) The duality theorem states that

- if the primal problem has an optimal solution, then so has the dual, and $z_p = z_D$;
- if the primal problem is unbounded, then the dual is infeasible;
- if the primal problem is infeasible, then the dual is either infeasible or unbounded.

Consider the following primal and dual problems

For feasible solutions of the primal and dual, we have

$$Z_P = \mathbf{c}^T \mathbf{x} = (\mathbf{y}^T A - \mathbf{t}^T) \mathbf{x} = \mathbf{y}^T (\mathbf{b} - \mathbf{s}) - \mathbf{t}^T x = z_D - \mathbf{y}^T \mathbf{s} - \mathbf{t}^T \mathbf{x}$$

For an optimal solution of the primal and dual, $z_p = z_D$ so

$$\mathbf{y}^T \mathbf{s} + \mathbf{t}^T \mathbf{x} = 0$$

Since variables are non negative this implies that

$$y_i s_i = 0 \ i = 1, \dots m$$

$$t_j x_j = 0 \ j = 1, \dots, n$$

(b) The solution $x_1 = 0$, $x_2 = 1$, $x_3 = 0$, $x_4 = 4$ yields z = 37 $s_1 = 3$, $s_2 = 0$.

The dual problem is

minimize
subject to

$$z_D = 15y_1 + 18y_2 + 17y_3$$

$$y_1 \ge 0, \ y_2 \ge 0,$$

$$6y_1 + 3y_2 + 5y_3 \ge 4$$

$$8y_1 + 3y_2 + 5y_3 \ge 1$$

$$3y_1 + 7y_2 + 8y_3 \ge 7$$

$$y_1 + 4y_2 + 3y_3 \ge 9$$

If the given solution is optimal, then we can use the complementary slackness conditions.

 $y_1s_1 = 0$ implies $y_1 = 0$ $x_2t_2 = 0$ implies $t_2 = 0$ $x_4t_4 = 0$ implies $t_4 = 0$ Thus,

$$\begin{array}{rcrcrcrc} 2y_2 + 5y_3 &=& 1\\ 4y_2 + 3y_3 &=& 9 \end{array}$$

$$y_2 = 3, y_3 = -1$$

and

 \mathbf{SO}

$$t_1 = 0, t_3 = 6$$

Therefore, the solution is feasible.

Since $z_D = 37 = z$ the proposed solution is optimal.

(c) Using matrix notation, the relevant problems are

(P) Maximize
$$\mathbf{c}^T \mathbf{x}$$
 (P) Maximize $\mathbf{c}^T \mathbf{x}$
subject to $\mathbf{x} \ge 0$ subject to $\mathbf{x} \ge \mathbf{0}$
 $A\mathbf{x} \le \mathbf{b}$ $A\mathbf{x} \le \mathbf{b} + \delta$

and the dual of (P) is

(D) Minimize $\mathbf{b}^T \mathbf{y}$ subject to $\mathbf{y} \ge \mathbf{0}$ $A^T \mathbf{y} \ge \mathbf{c}$

From the duality theorem,

$$z* = \mathbf{b}^T \mathbf{y}* = (\mathbf{y}*)\mathbf{b}$$

Let $\mathbf{x} = \mathbf{x} *$ be an optimal solution of (P'). Then

$$x * * = \mathbf{c}^T \mathbf{x} * \le (y*)^T A x * \le (y*)^T (\mathbf{b} + \delta) = z * + \sum_{i=1}^m s_i y_i *$$