QUESTION

(a) Consider the linear programming problem

maximize $\sum_{j=1}^{n} c_j x_j$ subject to $x_j \ge 0$ $j = 1, \dots, n$ $\sum_{j=1}^{n} a_{ij} x_j = b_i$ $i = 1, \dots, m$,

where the constraint matrix $A = (a_{ij})$ has rank m, and m < n. Explain briefly what is meant by a *basic feasible solution* of this problem. Prove that an extreme point of the convex set of feasible solutions is a basic feasible solution.

- (b) Give a brief explanation of the term *cycling* in the simplex method, and describe two methods by which cycling can be avoided. Explain briefly why the simplex method terminates after a finite number of iterations when cycling does not occur.
- (c) (i) Solve the following linear programming problem using the dual sim plex method.

Minimize $z = 5x_1 + 2x_2 + 5x_3$ subject to $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$ $3x_1 + x_2 + 2x_3 \ge 4$ $6x_1 + 3x_2 + 5x_3 \ge 10.$

(ii) Suppose that the additional constraint

 $x_2 + 2x_3 \ge 3$

is imposed. Obtain an optimal solution for this modified problem.

ANSWER

(a) Let $\mathbf{x}_0^T = (x_1^0, \dots, x_r^0, 0, \dots, 0)$ be an extreme point in which the first r components are positive, where r > m. Let $\mathbf{a}_1, \dots, \mathbf{a}_r$ be the first r columns of A. Since r > m, $\mathbf{a}_1, \dots, \mathbf{a}_r$ are linearly dependent, i.e. there exist $\lambda_1, \dots, \lambda_r$, not all zero such that

$$\lambda \mathbf{a}_1 + \ldots + \lambda_r \mathbf{a}_r = \mathbf{0}$$

Let

$$\epsilon = \min\left\{\frac{x_j^0}{|\lambda_j|} : \lambda_j \neq 0, \ j = 1, \dots, r\right\}$$

and consider $\mathbf{x}_0 + \epsilon \lambda$, $\mathbf{x}_2 = \mathbf{x}_0 - \epsilon \lambda$, where $\lambda^T = (\lambda_1, \dots, \lambda_r, 0, \dots, 0)$. The definition of ϵ ensures that $\mathbf{x}_1 \ge \mathbf{0}$ and $\mathbf{x}_2 \ge \mathbf{0}$. Furthermore,

$$A\mathbf{x}_1 = a(\mathbf{x}|_0 + \epsilon\lambda) = \mathbf{b} A\mathbf{x}_2 = A(\mathbf{x}_0 - \epsilon\lambda) = \mathbf{b}$$

so \mathbf{x}_1 and \mathbf{x}_2 are feasible solutions. However, $\mathbf{x}_0 \frac{(\mathbf{x}_1 + \mathbf{x}_2)}{2}$ which is impossible if \mathbf{x}_0 is an extreme point. Thus $r \leq m$. Also, $\mathbf{a}_1, \ldots \mathbf{a}_r$ are linearly independent, or else the above argument shows that \mathbf{x}_0 is not an extreme point. If r = m, then \mathbf{x}_0 is a basic feasible solution. If r < m, it is possible to select m - r columns of A which, together with $\mathbf{a}_1, \ldots \mathbf{a}_r$ are linearly independent. The corresponding variables define a basic feasible solution.

- (b) The simplex method cycles if a sequence of tableaus keeps reappearing. To avoid cycling use
 - Perturbation method: perturb right hand sides to $b_i + \epsilon^o$, $i = 1, \ldots, m$, where $0 \ll \epsilon^m \leq \ldots \ll \epsilon$. The perturbed problem will be non-degenerate, so cycling will not occur.
 - Bland's smallest subscript rule. By choosing the entering and leaving variable to have the smallest subscript, cycling is avoided.

When there is no cycling, the maximum number of feasible solutions is $\frac{n!}{(m!(n-m)!)}$, where *m* is the number of constraints and *n* is the number of variables. This determines the maximum number of iterations.

(c) (i) The problem is equivilent to maximizing $\overline{z} = -5x_1 - 2x_2 - 5x_3$. Add slack variables $s_1 \ge 0$, $s_2 \ge 0$

Basic	\overline{z}	x_1	x_2	x_3	s_1	s_2	
s_1	0	-3	-1	-2	1	0	-4
s_2	0	-6	-3	-5	0	1	-10
	1	5	2	5	0	0	
Basic	\overline{z}	x_1	x_2	x_3	s_1	s_2	
s_1	0	-1	0	$-\frac{1}{3}$	1	$-\frac{1}{3}$	$-\frac{2}{3}$
x_2	0	2	1	$\frac{5}{3}$	0	$-\frac{1}{3}$	$\frac{10}{3}$
	1	1	0	$\frac{4}{3}$	1	$\frac{1}{3}$	$-\frac{22}{3}$
Basic	\overline{z}	x_1	x_2	x_3	s_1	s_2	
x_1	0	1	0	$\frac{1}{3}$	-1	$\frac{1}{3}$	$\frac{2}{3}$
x_2	0	0	1	1	2	-1	$\overline{2}$
	1	0	0	$\frac{4}{3}$	1	$\frac{1}{3}$	$-\frac{22}{3}$
$T_{h_{1}} + 1$		time	al ao	1	. :		2

Thus, the optimal solution is $x_1 = \frac{2}{3}$, $x_2 = 2$, $x_3 = 0$, $z = \frac{22}{3}$.

Basic	\overline{z}	x_1	x_2	x_3	s_1	s_2	s_3	
x_1	0	1	0	$\frac{1}{3}$	-1	$\frac{1}{3}$	0	$\frac{2}{3}$
x_2	0	0	1	1	2	-1	0	2
s_3	0	0	0	-1	2	-1	1	-1
s_3	0	0	0	-1	2	-1	1	-1
	1	0	0	$\frac{4}{3}$	1	$\frac{1}{3}$	0	$-\frac{22}{3}$
				0		0		
Basic	\overline{z}	x_1	x_2	x_3	s_1	s_2	s_3	
$\frac{\text{Basic}}{x_1}$	\overline{z}	$\frac{x_1}{1}$	$\frac{x_2}{0}$	$\frac{x_3}{0}$	$\frac{s_1}{-\frac{1}{3}}$	$\frac{s_2}{0}$	$\frac{s_3}{\frac{1}{3}}$	$\frac{1}{3}$
$\frac{\text{Basic}}{x_1} \\ x_2$	\overline{z} 0 0	$\begin{array}{c} x_1 \\ 1 \\ 0 \end{array}$	$\begin{array}{c} x_2 \\ 0 \\ 1 \end{array}$		$\frac{s_1}{-\frac{1}{3}}{0}$		$\frac{s_3}{\frac{1}{3}}$ -1	$\frac{1}{3}$
$\begin{array}{c} \underline{\text{Basic}} \\ x_1 \\ x_2 \\ s_2 \end{array}$	\overline{z} 0 0 0				s_1 $-\frac{1}{3}$ 0 -2		s_3 $\frac{1}{3}$ -1 -1	$\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$
$\begin{array}{c} \text{Basic} \\ \hline x_1 \\ x_2 \\ s_2 \\ \end{array}$	$\begin{array}{c} \overline{z} \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$	$\begin{array}{c} x_1 \\ 1 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} x_2 \\ 0 \\ 1 \\ 0 \\ 0 \end{array}$		s_1 $-\frac{1}{3}$ 0 -2 $\frac{5}{3}$			$\frac{\frac{1}{3}}{3}$ $\frac{1}{-\frac{23}{3}}$

(ii) Include a slack variable $s_3 \ge 0$ in the new constraint

The new solution is $x_1 = \frac{1}{3}$, $x_2 = 3$, $x_3 = 0$, $z = \frac{23}{3}$