QUESTION

(a) Consider the linear programming problem

$$
\begin{array}{lll}
\operatorname{maximize} & \sum_{j=1}^{n} c_{j} x_{j} & \\
\text { subject to } & x_{j} \geq 0 & j=1, \ldots, n \\
& \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} & i=1, \ldots, m,
\end{array}
$$

where the constraint matrix $A=\left(a_{i j}\right)$ has rank m, and $m<n$. Explain briefly what is meant by a basic feasible solution of this problem. Prove that an extreme point of the convex set of feasible solutions is a basic feasible solution.
(b) Give a brief explanation of the term cycling in the simplex method, and describe two methods by which cycling can be avoided. Explain briefly why the simplex method terminates after a finite number of iterations when cycling does not occur.
(c) (i) Solve the following linear programming problem using the dual sim plex method.

$$
\begin{array}{ll}
\text { Minimize } & z=5 x_{1}+2 x_{2}+5 x_{3} \\
\text { subject to } & x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0 \\
& 3 x_{1}+x_{2}+2 x_{3} \geq 4 \\
& 6 x_{1}+3 x_{2}+5 x_{3} \geq 10
\end{array}
$$

(ii) Suppose that the additional constraint

$$
x_{2}+2 x_{3} \geq 3
$$

is imposed. Obtain an optimal solution for this modified problem.

ANSWER

(a) Let $\mathbf{x}_{0}^{T}=\left(x_{1}^{0}, \ldots, x_{r}^{0}, 0, \ldots, 0\right)$ be an extreme point in which the first r components are positive, where $r>m$. Let $\mathbf{a}_{1}, \ldots \mathbf{a}_{r}$ be the first r columns of A. Since $r>m, \mathbf{a}_{1}, \ldots \mathbf{a}_{r}$ are linearly dependent, i.e. there exist $\lambda_{1}, \ldots, \lambda_{r}$, not all zero such that

$$
\lambda \mathbf{a}_{1}+\ldots+\lambda_{r} \mathbf{a}_{r}=\mathbf{0}
$$

Let

$$
\epsilon=\min \left\{\frac{x_{j}^{0}}{\left|\lambda_{j}\right|}: \lambda_{j} \neq 0, j=1, \ldots, r\right\}
$$

and consider $\mathbf{x}_{0}+\epsilon \lambda, \mathbf{x}_{2}=\mathbf{x}_{0}-\epsilon \lambda$, where $\lambda^{T}=\left(\lambda_{1}, \ldots \lambda_{r}, 0, \ldots, 0\right)$. The definition of ϵ ensures that $\mathbf{x}_{1} \geq \mathbf{0}$ and $\mathbf{x}_{2} \geq \mathbf{0}$. Furthermore,

$$
A \mathbf{x}_{1}=a\left(\left.\mathbf{x}\right|_{0}+\epsilon \lambda\right)=\mathbf{b} A \mathbf{x}_{2}=A\left(\mathbf{x}_{0}-\epsilon \lambda\right)=\mathbf{b}
$$

so \mathbf{x}_{1} and \mathbf{x}_{2} are feasible solutions. However, $\mathbf{x}_{0} \frac{\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)}{2}$ which is impossible if \mathbf{x}_{0} is an extreme point. Thus $r \leq m$. Also, $\left.\mathbf{a}_{1}, \ldots \mathbf{a}\right)_{r}$ are linearly independent, or else the above argument shows that \mathbf{x}_{0} is not an extreme point. If $r=m$, then \mathbf{x}_{0} is a basic feasible solution. If $r<m$, it is possible to select $m-r$ columns of A which, together with $\mathbf{a}_{1}, \ldots \mathbf{a}_{r}$ are linearly independent. The corresponding variables define a basic feasible solution.
(b) The simplex method cycles if a sequence of tableaus keeps reappearing. To avoid cycling use

- Perturbation method: perturb right hand sides to $b_{i}+\epsilon^{o}, i=$ $1, \ldots, m$, where $0 \ll \epsilon^{m} \leq \ldots \ll \epsilon$. The perturbed problem will be non-degenerate, so cycling will not occur.
- Bland's smallest subscript rule. By choosing the entering and leaving variable to have the smallest subscript, cycling is avoided.

When there is no cycling, the maximum number of feasible solutions is $\frac{n!}{(m!(n-m)!!}$, where m is the number of constraints and n is the number of variables. This determines the maximum number of iterations.
(c) (i) The problem is equivilent to maximizing $\bar{z}=-5 x_{1}-2 x_{2}-5 x_{3}$. Add slack variables $s_{1} \geq 0, s_{2} \geq 0$

Basic	\bar{z}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	
s_{1}	0	-3	-1	-2	1	0	-4
s_{2}	0	-6	-3	-5	0	1	-10
	1	5	2	5	0	0	
Basic	\bar{z}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	
s_{1}	0	-1	0	$-\frac{1}{3}$	1	$-\frac{1}{3}$	$-\frac{2}{3}$
x_{2}	0	2	1	$\frac{5}{3}$	0	$-\frac{1}{3}$	$\frac{10}{3}$
	1	1	0	$\frac{4}{3}$	1	$\frac{1}{3}$	$-\frac{22}{3}$
Basic	\bar{z}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	
x_{1}	0	1	0	$\frac{1}{3}$	-1	$\frac{1}{3}$	$\frac{2}{3}$
x_{2}	0	0	1	1	2	-1	2
	1	0	0	$\frac{4}{3}$	1	$\frac{1}{3}$	$-\frac{22}{3}$

Thus, the optimal solution is $x_{1}=\frac{2}{3}, x_{2}=2, x_{3}=0, z=\frac{22}{3}$.
(ii) Include a slack variable $s_{3} \geq 0$ in the new constraint

Basic	\bar{z}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	
x_{1}	0	1	0	$\frac{1}{3}$	-1	$\frac{1}{3}$	0	$\frac{2}{3}$
x_{2}	0	0	1	1	2	-1	0	2
s_{3}	0	0	0	-1	2	-1	1	-1
s_{3}	0	0	0	-1	2	-1	1	-1
	1	0	0	$\frac{4}{3}$	1	$\frac{1}{3}$	0	$-\frac{22}{3}$
Basic	\bar{z}	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	
x_{1}	0	1	0	0	$-\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{1}{3}$
x_{2}	0	0	1	2	0	0	-1	3
s_{2}	0	0	0	1	-2	1	-1	1
	1	0	0	1	$\frac{5}{3}$	0	$\frac{1}{3}$	$-\frac{23}{3}$

The new solution is $x_{1}=\frac{1}{3}, x_{2}=3, x_{3}=0, z=\frac{23}{3}$

