QUESTION Define the following terms:

- (i) subgroup
- (ii) left coset
- (iii) the order of an element g in a group G.

State Lagrange's theorem and use it to show that if H and K are finite subgroups of a group G with |H| and |K| coprime, then $H \cap K = \{e\}$. Show that, if in addition H and K are both normal subgroups of G. then for any elements $h \in H$ and $k \in K$, the product $h^{-1}k^{-1}hk = e$.

Give an example of a finite group G which contains a non-normal subgroup H.

ANSWER

- (i) Let (G, e, *) be a group. A subgroup of (G, e, *) is a subset H < F such that
 - (s1) $e \in H$
 - (s2) If $h_1, h_2 \in H$ then $h_1 8 h_2 \in H$
 - (s3) If $h \in H$ then $h^{-1} \in H$.
- (ii) if H is a subgroup of G and $g \in G$ then the left coset gH is the subset $\{gh|h \in H\}$
- (iii) The order of g is the least prime integer n such that $g^n = e$, or is ∞ if there is no such n.

Lagrange's Theorem

Let G be a finite group and H < G then |H| divides |G|. $H \cap K$ is a subgroup of H so $|H \cap K|$ divides |H|. Similarly it divides |K|. Since their greatest common divisor is 1, $|H \cap K| = 1$. The element $h^{-1}k^{-1}h \in K$ since $K \triangle G$ so $h^{-1}k^{-1}hk \in K$. Similarly $h^{-1}k^{-1}hk \in H$ so $h^{-1}k^{-1}hk \in H \cap K = \{e\}$. Let $G = D_n$, $H = \langle \sigma_i \rangle \ \rho^{-1}H\rho = \langle \sigma_{i+1} \rangle = \langle \sigma_i \rangle$ or similar. ρ =rotation and σ_i =reflection.