
QUESTION
Decide for each of the following statements whether or not it is true giving
a brief explanation for your answer.

(i) The odd permutations in Sn form a subgroup.

(ii) If G and G′ are isomorphic groups then every subgroup of G is isomor-
phic to a subgroup of G′.

(iii) Every group is isomorphic to a subgroup of a permutation group.

(iv) For every positive integer n there is a non-abelian group with precisely
n elements.

(v) If f : G→ G′ is a surjective homomorphism then the order of G′ divides
the order of G.

(vi) Every subgroup of an abelian group is normal.

ANSWER

(i) False

If m,n are odd, τ1, τ2, . . . , τm, τm+1, . . . , τm+n are transpositions and
σ = τ1 . . . τm, σ′ = τm+1 . . . τm+n then σ, σ′ ∈ { odd permutations} but
σσ′ is even.

(ii) True

Let f : G → G′ be an isomorphism, and H < G. Then f |H : H →
f(H) is bijective and ∀h1, h2 ∈ H f(h1.h2) = f(h1).f(h2) since f is an
isomorphism. So H ∼= f(H).

(iii) True

Let SG denote the group of permutations of G and for each g ∈ G define

σg ∈ SG by σg(h) = g.h. f :
G⇒ SG

g 7→ σg
is injective by the cancellation

lemma and f(gg′)(h) = σgg′(h) = gg′h = g(g′h) = σg(g
′h) = σg ◦σg′(h)

so it is a homomorphism. Hence f is an isomorphism from G to Im(f).

(iv) False

If n is prime then any group of order n is cyclic and hence abelian.

(v) True

Let K =kerf so G
K
∼= G′ and |G′| = |G|

|K|
i.e. |G| = |K||G′|
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(vi) True

A subgroup H < G is normal ⇔ gH = Hg for every g ∈ G. In an
Abelian group gh = hg∀h, g ∈ G so gH = Hg.
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