Question

For the circle A given in Problem 1, determine the general form of an element of $\operatorname{Möb}(A)=\{m \in \operatorname{Möb} \mid m(A)=A\}$.

Further, determine which elements of $\operatorname{Möb}(A)$ do not interchange the two discs determined by A, and which do.

Answer

$m \in \operatorname{Möb}(\mathbf{R})$ has one of the following forms:

$$
\begin{aligned}
& p(z)=\frac{a z+b}{c z+d} a, b, c, d \in \mathbf{R}, \mathbf{a d}-\mathbf{b c}= \pm \mathbf{1} . \\
& q(z)=\frac{a \bar{z}+b}{c \bar{z}+d} a, b, c, d \in \mathbf{R}, \mathbf{a d}-\mathbf{b c}= \pm \mathbf{1} .
\end{aligned}
$$

Calculate $m p m^{-1}$ and $m q m^{-1}$ with m as in problem 1.

$$
\begin{aligned}
& m p m^{-1} \\
& =\left(\begin{array}{cc}
-4-8 i & 4+6 i \\
-2 & 1+i
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
1+i & -4-6 i \\
2 & -4-8 i
\end{array}\right) \\
& =\left(\begin{array}{cc}
(4-12 i) a-(8+16 i) b & (-32+56 i) a+(-48+16 i) b \\
+(-2+10 i) c+(8+12 i) d & +(-20+48 i) c+(32+-56 i) d \\
-2(1+i) a-4 b & (8+12 i) a+(8+16 i) b \\
+2 i c+2(1+i) d & +(2-10 i) c+(4-12 i) d
\end{array}\right)
\end{aligned}
$$

where $a, b, c, d \in \mathbf{R}$ and $a d-b c= \pm 1\left(\mathrm{mpm}^{-1}\right.$ does not interchange the two discs determined by A if and only if $a d-b c=1$).
$m q m^{-1}: \underline{\text { careful with } \bar{z} s \text { in the compositions }}$
$m q m^{-1}$
$=\left(\begin{array}{cc}-4-8 i & 4+6 i \\ -2 & 1+i\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}1-i & -4+6 i \\ 2 & -4+8 i\end{array}\right)$
since $m^{-1}(z)$ gets conjugated in $q(z)$

$$
\begin{aligned}
& \left(\begin{array}{cc}
(-4-8 i) a+(4+6 i) c & (-4-8 i) b+(4+6 i) d \\
-2 a+(1+i) c & -2 b+(1+i) d
\end{array}\right)\left(\begin{array}{cc}
1-i & -4+6 i \\
2 & -4+8 i
\end{array}\right) \\
& =\left[\begin{array}{cc}
(-12-4 i) a-(8+16 i) b & (64+16 i) a+80 b \\
+(10+2 i) c+(8+12 i) d & -52 c+(-64+8 i) d \\
-2(1-i) a-4 b & (8-12 i) a+(8-16 i) b \\
+2 c+2(1+i) d & +(-10+2 i) c+(-12+2 i) d
\end{array}\right]
\end{aligned}
$$

where $a, b, c, d \in \mathbf{R}$ and $a d-b c= \pm 1\left(\mathrm{mqm}^{-1}\right.$ does not interchange the two discs determined by A if and only if $a d-b c=-1$).

