$\begin{array}{c} \textbf{Applications of Partial Differentiation} \\ \textbf{\textit{Extremes}} \end{array}$

Question

Find and classify the critical points of the function

$$f(x,y) = \frac{x}{y} + \frac{8}{x} - y$$

Answer

$$f_1(x,y) = \frac{1}{y} - \frac{8}{x^2} = 0$$
 if $8y = x^2$
 $f_2(x,y) = -\frac{x}{y^2} - 1 = 0$ if $x = -y^2$

For critical points: $8y = x^2 = y^4$, so y = 0 or y = 2. f(x, y) is not defined when y = 0, so the only critical point is (-4, 2). At (-4, 2) we have

$$A = f_{11} = \frac{16}{x^3} = -\frac{1}{4}$$

$$B = f_{12} = -\frac{1}{y^2} = -\frac{1}{4}$$

$$C = f_{22} = \frac{2x}{y^3} = -1$$

Thus $B^2 - AC = \frac{1}{16} - \frac{1}{4} < 0$, and (-4, 2) is a local maximum.