Question

Find the Green's function for the following boundary value problem

$$
y^{\prime \prime}+y=f(x) ; \quad y(0)=0, \quad y(b)=0
$$

What happens in the case $b=n \pi$ where n is an integer?
Use the Green's function to obtain the solution to

$$
y^{\prime \prime}+y=x ; \quad y(0)=0, \quad y\left(\frac{\pi}{2}\right)=0
$$

Answer

$$
y^{\prime \prime}+y=0 \quad y(0)=0 ; \quad y(b)=0 .
$$

Solution is $y=A \sin x+B \cos x$
We want solutions $\begin{aligned} & y_{1}(x) \\ & y_{2}(x)\end{aligned}$ which vanishes when $\begin{aligned} & x=b \\ & x=0\end{aligned}$
y_{2} is given by $y_{2}(x)=\sin x$
For y_{1} we choose A and B so that

$$
\begin{aligned}
& 0=A \sin b+B \cos b \\
& \text { Let } A=\cos b \text { and } B=-\sin b \\
& \text { Then } y_{2}(x)=\sin x \cos b-\cos x \sin b \\
& =\sin (x-b) \\
& \text { so } y_{1}=\sin (x-b) \\
& y_{2}=\sin x \\
& W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{ll}
\sin (x-b) & \sin x \\
\cos (x-b) & \cos x
\end{array}\right| \\
& =\sin (x-b) \cos x-\cos (x-b) \sin x \\
& =\sin (x-b-x) \\
& =\sin (-b) \\
& =-\sin b
\end{aligned}
$$

So in this case: $\tilde{G}(x, s)= \begin{cases}\frac{\sin (s-b) \sin (x)}{-\sin (b)} & 0 \leq x \leq s \leq b \\ \frac{\sin (x-b) \sin (s)}{-\sin (b)} & 0 \leq s \leq x \leq b\end{cases}$
If $b=n \pi$ then $\sin b=0$ and $\tilde{G}(x, s)$ is not well defined by the above.
This is because there is no non-trivial solution to the boundary value problem $y^{\prime \prime}+y=0$ subject to $y(0)=0$ and $y(n \pi)=0$
If $b=\frac{\pi}{2}$ then $\sin \left(\frac{\pi}{2}\right)=1$ and $\sin \left(x-\frac{\pi}{2}\right)=-\cos x$

$$
\begin{aligned}
\text { So } \tilde{G}(x, s) & =\left\{\begin{array}{cl}
\cos s \sin (x) & x \leq s \\
\cos x \sin s & s \leq x
\end{array}\right. \\
\text { so that } y(x) & =\int_{0}^{x} \cos x \sin s \cdot s d s+\int_{x}^{\frac{\pi}{2}}(\sin x)(\cos s) s d s
\end{aligned}
$$

Now we integrate by parts:

$$
\begin{aligned}
& \int_{0}^{x}(\sin s) s d s=[-\cos s \cdot s]_{0}^{x}+\int_{0}^{x} \cos s d s \\
&=-x \cos x+\sin x \\
& \int_{x}^{\frac{\pi}{2}}(\cos s) s d s=[\sin \cdot s]_{x}^{\frac{\pi}{2}}-\int_{x}^{\frac{\pi}{2}} \sin s d s \\
&=\frac{\pi}{2}-x \sin x-\cos x \\
& y=-x \cos ^{2} x+\sin x \cos x+\frac{\pi}{2} \sin x-x \sin ^{2} x-\cos x \sin x \\
&=-x+\frac{\pi}{2} \sin x
\end{aligned}
$$

NOTE: there is a sign error in this answer, but not sure where.

