Question

Consider a portfolio Π which is composed of a proportion $\lambda<1$ of a risk free asset S_{0} with associated return R_{0} and a proportion $1-\lambda$ of a risky portfolio S_{1} with associated return R_{1} and variance σ_{1}^{2}. Show that as λ varies, Π lies along a straight line in the risk/reward diagram, the line having slope $\theta=\left(R_{1}-R_{0}\right) / \sigma_{1}$. Explain briefly why this implies that the problem of finding the capital market line reduces to that of maximizing θ over all risky portfolios.
Now consider a scenario where there are three risky assets S_{1}, S_{2} and S_{3} with respective expected returns

$$
R_{1}=0.08, \quad R_{2}=0.10, \quad R_{3}=0.12
$$

The variances and covariances between the assets are given by

$$
\begin{aligned}
\sigma_{1}^{2} & =0.008 \\
\sigma_{12} & =0.004 \\
\sigma_{13} & =0 \\
\sigma_{2}^{2} & =0.006 \\
\sigma_{23} & =0.002 \\
\sigma_{3}^{2} & =0.008
\end{aligned}
$$

and the risk free rate is 0.05 . Short selling and borrowing are allowed. Show that the optimal portfolio of risky assets consists of investing proportions $1 / 11,4 / 11$ and $6 / 11$ of one's total wealth in S_{1}, S_{2} and S_{3} respectively. Show that the associated risk and return are $\sqrt{520 / 121} \sim 2.07 \%$ and 120/11 \sim 10.91% respectively, and the market price of risk is

$$
\theta=\frac{\sqrt{130}}{4} \sim 2.85
$$

Answer

We have $\Pi=\lambda S_{0}+(1-\lambda) S_{1}$ and thus

$$
R_{\Pi}=\lambda R_{0}+(1-\lambda) R_{1} .
$$

For the portfolio variance σ_{Π}^{2} we have

$$
\sigma_{\Pi}^{2}=\lambda^{2} \sigma_{0}^{2}+2 \lambda(1-\lambda) \sigma_{01}+(1-\lambda)^{2} \sigma_{1}^{2}
$$

But S_{0} is riskless, so by definition $\sigma_{0}=0, \sigma_{01}=1$.
Thus

$$
\begin{aligned}
\sigma_{\Pi}^{2} & =(1-\lambda)^{2} \sigma_{1}^{2} \\
\Rightarrow \sigma_{\Pi} & =(1-\lambda) \sigma_{1}
\end{aligned}
$$

Now

$$
\begin{aligned}
\lambda<1 & \Rightarrow 1-\lambda>0 \\
& \Rightarrow \sigma_{\Pi}=(1-\lambda) \sigma_{1} \\
& \Rightarrow \lambda=1-\frac{\sigma_{\Pi}}{\sigma_{1}}
\end{aligned}
$$

Thus

$$
R_{\Pi}=\left(1-\frac{\sigma_{\Pi}}{\sigma_{1}}\right) R_{0}+\frac{\sigma_{\Pi}}{\sigma_{1}} R_{1}=R_{0}+\sigma_{\Pi}\left(\frac{R_{1}-R_{0}}{\sigma_{1}}\right)
$$

A straight line of slope $\left(R_{1}-R_{0}\right) / \sigma_{1}$ as required.
Now the CML is just the straight line through the risk free return R_{0} at σ_{Π} which is tangent to the boundary of the (convex) opportunity slope; obviously therefore it is the line that passes through $\left(R_{0}, 0\right)$ and some risky portfolio that has positive slope.
Now we have to maximize $\theta=\left(R_{\Pi}-R_{0}\right) / \sigma_{\Pi}$ over all possible risky portfolios where

$$
\begin{aligned}
\Pi= & X_{1} S_{1}+X_{2} S_{2}+X_{3} S_{3} \\
& X_{1}+X_{2}+X_{3}-1 .
\end{aligned}
$$

Now

$$
R_{\Pi}=X_{1} R_{1}+X_{2} R_{2}+X_{3} R_{3}=\frac{1}{100}\left(8 X_{1}+10 X_{2}+12 X_{3}\right)
$$

and

$$
\begin{aligned}
\sigma_{\Pi}= & \left(X_{1}^{2} \sigma_{1}^{2}+2 X_{1} X_{2} \sigma_{12}+X_{2}^{2} \sigma_{2}^{2}+2 X_{1} X_{3} \sigma_{13}+X_{3}^{2} \sigma_{3}^{2}\right. \\
& \left.+2 X_{2} X_{3} \sigma_{23}\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
= & \left(X_{1}^{2}+8 X_{1} X_{2}+6 X_{2}^{2}+8 X_{3}^{2}\right. \\
& \left.+4 X_{2} X_{3}\right)^{\frac{1}{2}}\left(\frac{10^{\frac{1}{2}}}{100}\right) \\
= & 10^{\frac{1}{2}} \frac{\alpha^{\frac{1}{2}}}{100} \text { say. }
\end{aligned}
$$

Now we have to maximize $\theta=\frac{(8-5) X_{1}+(10-5) X_{2}+(12-5) X_{3}}{\alpha^{1 / 2}}$.

$$
\text { i.e. } \quad \theta=\frac{3 \mathrm{X}_{1}+5 \mathrm{X}_{2}+7 \mathrm{X}_{3}}{\alpha^{1 / 2}}
$$

Let $3 X-1+5 X_{2}+7 X_{3}=\beta$. Then

$$
\begin{aligned}
\frac{\partial \theta}{\partial X_{1}} & =\frac{3 \alpha^{1 / 2}-\beta \frac{1}{2} \alpha^{-1 / 2}\left(16 X_{1}+8 X_{2}\right)}{\alpha}=0 \\
\frac{\partial \theta}{\partial X_{2}} & =\frac{5 \alpha^{1 / 2}-\beta \frac{1}{2} \alpha^{-1 / 2}\left(8 X_{1}+12 X_{2}+4 X_{3}\right)}{\alpha}=0 \\
\frac{\partial \theta}{\partial X_{3}} & =\frac{7 \alpha^{1 / 2}-\beta \frac{1}{2} \alpha^{-1 / 2}\left(16 X_{3}+4 X_{2}\right)}{\alpha}=0
\end{aligned}
$$

(n.b. factors of 10 not important)

Let $\beta X_{i} / \alpha^{2}=z_{i}$ (using the usual trick) then

$$
\begin{array}{ll}
3=8 z_{1}+4 z_{2} & \Rightarrow z_{1}=3 / 8-z_{2} / 2 \\
5=4 z_{1}+6 z_{2}+2 z_{3} & \\
7=2 z_{2}+8 z_{3} \quad \Rightarrow z_{3}=7 / 8-z_{2} / 4 \\
\Rightarrow 5-\frac{3}{2}=-2 z_{2}+6 z_{2}+\frac{7}{4}-z_{2} / 2 \quad z+2=\frac{1}{2}
\end{array}
$$

Thence $z_{1}=\frac{1}{8}, \quad z_{3}=\frac{3}{4}$.
Now $\sum X_{i}=1$

$$
\Rightarrow \frac{\beta}{\alpha^{2}}=\sum z_{i}=\frac{11}{8}
$$

Thus

$$
\begin{aligned}
& X_{1}=\frac{1}{11} \\
& X_{2}=\frac{4}{11} \\
& X_{3}=\frac{6}{11}
\end{aligned}
$$

Thence $R_{\Pi}=\frac{1}{100}\left(\frac{8}{11}+\frac{40}{11}+\frac{77}{11}\right)=\frac{120}{11} \% \sim 10.91 \%$

$$
\begin{aligned}
\frac{100^{2}}{10} \sigma_{\Pi}^{2} & =\frac{8}{121}+\frac{32}{121}+\frac{96}{121}+\frac{8.36}{121} \\
& =\frac{520}{121} \\
& \Rightarrow \sigma_{\Pi}=\left(\sqrt{\frac{5200}{121}}\right) \frac{1}{100} \\
\theta & =\frac{\frac{120}{11}-\frac{500}{100}}{\frac{100}{100} \sqrt{\frac{5200}{121}}} \\
& =\sqrt{\frac{\sqrt{13}}{4}} \sim 0.90138
\end{aligned}
$$

