Question

If f is measurable prove that for all $a, b \in \mathbf{R}\{x \mid a \leq f(x)<b\}$ is measurable. Is the converse of this result true?

Answer

$\{x \mid a \leq f(x)<b\}=\{x \mid f(x)<b\} \cap\{x \mid f(x) \geq a\}$
The converse is not true, for example, let $\mathbf{R}_{+}^{\mathbf{n}}$ be the half space $x_{1}>0$. Let A be a non-measurable subset of $\mathbf{R}_{+}^{\mathbf{n}}$. Define $f: \mathbf{R}^{\mathbf{n}} \rightarrow \mathbf{R}^{*}$ by $f(x)=\left\{\begin{array}{cll}0 & \text { if } & x \notin \mathbf{R}_{+}^{\mathbf{n}} \\ +\infty & \text { if } & x \in A \\ -\infty & \text { if } & x \in \mathbf{R}_{+}^{\mathbf{n}}-A\end{array}\right.$
Then for all $a, b \in \mathbf{R},\{x \mid a \leq f(x)<b\}$ is either ϕ or the complement of $\mathbf{R}_{+}^{\mathbf{n}}$, both of which are measurable. However $\{x \mid f(x)>0\}=A$ which is non-measurable.

