Vector Calculus
 Grad, Div and Curl Identities

Question

It is given that ϕ and ψ are scalar fields and \underline{F} and \underline{G} are vector fields. They are all assumed to be smooth functions. Prove the following identity

$$
\nabla(\phi \psi)=\phi \nabla \psi+\psi \nabla \phi
$$

Answer

$$
\begin{aligned}
\nabla(\phi \psi) & =\frac{\partial}{\partial x}(\phi \psi)+\frac{\partial}{\partial y}(\phi \psi)+\frac{\partial}{\partial z}(\phi \psi) \\
& =\left(\phi \frac{\partial \psi}{\partial x}+\frac{\partial \phi}{\partial x} \psi\right) \underline{i}+\cdots+\left(\phi \frac{\partial \psi}{\partial z}+\frac{\partial \phi}{\partial z} \psi\right) \underline{k} \\
& =\phi \nabla \psi+\psi \nabla \phi
\end{aligned}
$$

