Question
a) Give the Laurent series expansions in powers of z for

1
f(Z)—m

in each of the two regions 0 < |z| < 2 and |z| > 2.

Hence, or otherwise, evaluate / f(z)dz, where C, is the circle |z| =7
c

in the clockwise sense in each of the cases 0 <r<2and2<r.

b) Use the calculus of residues to show that
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Answer

a) For 0 < |z| < 2

/ f(z)dz = 27i > residues within C,

r

1
The residue at z = 2 is lir%z —2f(2) = 2

The residue at z =0 is —i from the first expansion.
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Soif r < 2,% f(z)dz = —27TZZ = —g (going clockwise)
Cr
Thus §. f(z)dz = % (going anticlockwise)
In the case r > 2 the sum of the residues is zero,

So [f¢, f(2)dz = 0 in both directions.
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Let f(2) Er now R < o and / — converges.
Integrate f(z) round I', with R > 1

f(z) has a pole of order 2 at z = i inside T, with residue —;

diffn formula.

using the

Thus/f(z)dzz E
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»/Semicircle f(z)dz = (Rﬁﬂ_l)z —0as R—
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Thus /_OO flz)dz = 5 and so /o mdm =7



