Question

For the following system of equations

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & 2 & 0 & 0 \\
0 & 3 & -2 & -2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{l}
0 \\
4 \\
1 \\
1
\end{array}\right)
$$

(a) Write down the matrix and the augmented matrix
(b) Find the rank of both by the elimination method
(c) Use this information to determine whether the equations have a solution, and if they do how many free variables there are.
(d) If they do have a solution, find it, and confirm that indeed it has the right number of free variables.

Answer
(a) $A=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & 2 & 0 & 0 \\ 0 & 3 & -2 & -2\end{array}\right) \quad A: b=\left(\begin{array}{ccccc}1 & 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & -1 & 4 \\ 1 & 2 & 0 & 0 & 1 \\ 0 & 3 & -2 & -2 & 1\end{array}\right)$
(b) Use elimination method to find rank

$$
\begin{aligned}
& A: b=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & -1 & -1 & 4 \\
1 & 2 & 0 & 0 & 1 \\
0 & 3 & -2 & -2 & 1
\end{array}\right) \rightarrow \begin{array}{c}
\text { (row } 2 \rightarrow \text { row } 2-\text { row 1) } \\
(\text { row } 3 \rightarrow \text { row } 3-\text { row } 1)
\end{array} \\
& =\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 0 \\
0 & 0 & -2 & -2 & 4 \\
0 & 1 & -1 & -1 & 1 \\
0 & 3 & -2 & -2 & 1
\end{array}\right) \rightarrow(\text { row } 4 \rightarrow \text { row } 4-3 \text { row } 3) \\
& =\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 0 \\
0 & 0 & -2 & -2 & 4 \\
0 & 1 & -1 & -1 & 1 \\
0 & 0 & 1 & 1 & -2
\end{array}\right) \rightarrow \begin{array}{l}
(\text { row } 3 \rightarrow \text { row 2) } \\
(\text { row } 2 \rightarrow \text { row 4) } \\
(\text { row } 4 \rightarrow \text { row } 3)
\end{array} \\
& =\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & -1 & -1 & 1 \\
0 & 0 & 1 & 1 & -2 \\
0 & 0 & -2 & -2 & 4
\end{array}\right) \rightarrow \quad(\text { row } 4 \rightarrow \text { row } 4+2 \text { row } 3)
\end{aligned}
$$

$$
=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & -1 & -1 & 1 \\
0 & 0 & 1 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Hence both $r(A)=r(A: b)=3$
(c) Hence equations do have a solution and since $r(A)=r(A: b)$, no. of free parameters $=$ no of unknowns $-r(A)=4-3=1$
(d) Equations are

$$
\begin{aligned}
x+y+z+w & =0 \\
y-z-w & =1 \\
z+w & =-2
\end{aligned}
$$

Let $w=C \Rightarrow z=-2-C \Rightarrow y=-1 \Rightarrow x=3$ and
$\mathbf{x}=\left(\begin{array}{c}3 \\ -1 \\ -2-C \\ C\end{array}\right)$ with one free variable as expected.

