QUESTION

Let $f(x)=x^{3}-x+1$
Calculate the values of $f(0), f(1), f(2)$ modulo 3 , and hence deduce that $f(x)=0$ has no integer solutions.
ANSWER
$f(0)=0-0+1=1, f(1)=1-1+1=1$ and $f(2)=8-2+1=7$, and so $f(0), f(1)$ and $f(2)$ are all congruent to 1 modulo 3 . If n were an integer solution of $f(x)=0$, we'd have $f(n)=0$, and hence $f(n) \equiv 0 \bmod 3$. But n must be congruent to one of $0,1,2 \bmod 3$, by lemma 3.3 , and so by the above this gives $f(n) \equiv 1 \bmod 3$. This contradiction shows that we cannot have any integer solutions of $f(x)=0$.

