Question

Suppose that an apartment room contains $40 \mathrm{~m}^{3}$ of air and that it is initially free of carbon monoxide. At midnight a smoker enters the room and lights a cigarette that produces carbon monoxide at a rate of $1.2 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{sec}$. A window is open so that fresh air enters the room at a rate of $3 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}$. In the room the air and pollutants are quickly mixed by a fan and mixed air then exits through another window at the same rate as it entered. Determine the concentration of carbon monoxide in the room as a function of time. Extended exposure to carbon monoxide at concentrations as low as 0.00012 is harmful to the human body. At what time is this dangerous concentration reached? If a second smoker enters the room 15 minutes after the first smoker how long does it take to reach the danger level?

Answer

Equation for volume of air in room $V(t)$ is:
rate of change of air in room $=$ air flow in - air flow out
$d V / d t=0$
Hence volume of air in room is constant $=40$
Equation for the Carbon dioxide in the room (where $\mathrm{M}(\mathrm{t})=\mathrm{m}^{3}$ of carbon dioxide in the room) is:
Rate of change of $\mathrm{M}(\mathrm{t})=$ rate in - rate out
$\frac{d M}{d t}=1.2^{-6}-3 \times 10^{-3} \frac{M}{40}$
where $\frac{M}{40}$ is the concentration of carbon dioxide in the room.
Initial condition is $M(0)=0$
The equation is linear so use integrating factor to give

$$
\frac{d}{d t}\left(e^{7.5 \times 10^{-5} t} M\right)=1.2 \times 10^{-6} e^{7.5 \times 10^{-5} t}
$$

Using the initial conditions then gives $M=1.6 \times 10^{-2}\left(1-e^{-7.5 \times 10^{-5} t}\right)$
The concentration in the room becomes 0.00012 when $0.00012=\frac{M}{40}=$ $4.0^{-4}\left(1-e^{-7.5 \times 10^{-5} t}\right)$
which is approximately 1.3 hrs .

If the second smoker enters the room after 15 minutes then at $\mathrm{t}=15 \mathrm{mins} M=1.6 \times 10^{-2}\left(1-e^{-7.5 \times 10^{-5}(15 \times 60)}\right)$
(recall all measurements are in seconds) After this time the equation for the carbon dioxide must include the second smoker so that: $\frac{d M}{d t}=2\left(1.2^{-6}\right)-$ $3 \times 10^{-3} \frac{M}{40}$
which has a solution $M=3.2 \times 10^{-2}\left(1-B e^{-7.5 \times 10^{-5} t}\right)$
Again consider when $\frac{M}{40}=0.00012$ to give $t \approx 50$ minutes.

