Question

Find the vector equation and standard equation of the following planes:
(i) The plane Π_{1} which passes through the point $P=(5,7,-6)$ and has the normal vector $\mathbf{n}=2 \mathbf{i}+2 \mathbf{j}-7 \mathbf{k}$;
(ii) The plane Π_{2} which passes through the three points $P_{1}=(4,4,-2)$, $P_{2}=(1,0,-4), P_{3}=(7,15,2) ;$
(iii) The plane Π_{3} which passes through the point $P=(5,0,-8)$ and is parallel to the plane with equation $4 x+4 y-14 z=11$.

Are any of the planes $\Pi_{1}, \Pi_{2}, \Pi_{3}$ parallel? Are any of them equal?
Answer
(i) Vector equation of the plane is $\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{\mathbf{0}}\right)=0$.

Where
$\mathbf{n}=\left(\begin{array}{c}2 \\ 2 \\ -7\end{array}\right)$ is a normal vector to the plane.
$\mathbf{r}=\left(\begin{array}{c}x \\ y \\ z\end{array}\right)$ is the possition vector of a general point in the plane.
$\mathbf{r}_{\mathbf{0}}=\left(\begin{array}{c}5 \\ 7 \\ -6\end{array}\right)$ is the possition vector of a known point in the plane.
Hence $\left(\begin{array}{c}2 \\ 2 \\ -7\end{array}\right) \cdot\left[\left(\begin{array}{l}x \\ y \\ z\end{array}\right)-\left(\begin{array}{c}5 \\ 7 \\ -6\end{array}\right)\right]=0$ or $\left(\begin{array}{c}2 \\ 2 \\ -7\end{array}\right) \cdot\left(\begin{array}{c}x-5 \\ y-7 \\ z+6\end{array}\right)=0$

This gives the equation

$$
\begin{aligned}
2(x-5)+2(y-7)-7(z+6) & =0 \\
2 x+2 y-7 z & =10+14+42=66 \\
\text { so } 2 x+2 y-7 z & =66 .
\end{aligned}
$$

(ii) Plane passes through the point $P_{2}=(1,0,-4)$ with position vector $\mathbf{r}_{\mathbf{0}}=\left(\begin{array}{c}1 \\ 0 \\ -4\end{array}\right)$

Two vectors in the plane are:
$\overrightarrow{P_{2} P_{1}}=\left(\begin{array}{c}4 \\ 4 \\ -2\end{array}\right)-\left(\begin{array}{c}1 \\ 0 \\ -4\end{array}\right)=\left(\begin{array}{l}3 \\ 4 \\ 2\end{array}\right)$
$\overrightarrow{P_{2} P_{3}}=\left(\begin{array}{c}7 \\ 15 \\ 2\end{array}\right)-\left(\begin{array}{c}1 \\ 0 \\ -4\end{array}\right)=\left(\begin{array}{c}6 \\ 15 \\ 6\end{array}\right)$

A normal vector to the plane is
$\mathbf{n}=\overrightarrow{P_{2} P_{1}} \times \overrightarrow{P_{2} P_{3}}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 4 & 2 \\ 6 & 15 & 6\end{array}\right|=\left(\begin{array}{c}-6 \\ -6 \\ 21\end{array}\right)$
Vector equation of the plane is: $\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{\mathbf{0}}\right)=0$.
$\left(\begin{array}{c}-6 \\ -6 \\ 21\end{array}\right) \cdot\left(\begin{array}{c}x-1 \\ y \\ z+4\end{array}\right)=0$
Standard equation of plane:

$$
\begin{aligned}
-6(x-1)-6 y+21(z+4) & =0 \\
-6 x-6 y+21 z & =-6-84=-90 \\
\text { so } 2 x+2 y-7 z & =30
\end{aligned}
$$

(iii) The plane π_{3} passes through the point with position vector $\mathbf{r}_{\mathbf{0}}=\left(\begin{array}{c}5 \\ 0 \\ -8\end{array}\right) \mathrm{A}$ normal to the plane is $\mathbf{n}=\left(\begin{array}{c}4 \\ 4 \\ -14\end{array}\right)$ (i.e. the same normal vector as its parallel plane $4 x+4 y-14 z=11)$

Vector equation of $\pi_{3}:\left(\begin{array}{c}4 \\ 4 \\ -14\end{array}\right) \cdot\left(\begin{array}{c}x-5 \\ y \\ z+8\end{array}\right)=0$ Standard equation of $\pi_{3}:$

$$
\begin{aligned}
4(x-5)+4 y-14(z+8) & =0 \\
4 x+4 y-14 z & =20+112=132 \\
\text { so } 2 x+2 y-7 z & =66
\end{aligned}
$$

The planes $\pi_{1}, \pi_{2}, \pi_{3}$ are all parallel, because their normal vectors are all parallel to $\mathbf{n}=\left(\begin{array}{c}2 \\ 2 \\ -7\end{array}\right)$ The planes π_{1} and π_{3} are equal because the are parallel, and their equations are consistent.

