Question

Using the cross product, find a unit vector orthogonal to both \mathbf{u} and \mathbf{v} where:
(i) $\mathbf{u}=\mathbf{i}+\mathbf{j}$ and $\mathbf{v}=\mathbf{j}+2 \mathbf{k}$;
(ii) $\mathbf{u}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$ and $\mathbf{v}=4 \mathbf{i}+\mathbf{j}+3 \mathbf{k}$;
(iii) $\mathbf{u}=\mathbf{j}+3 \mathbf{k}$ and $\mathbf{v}=5 \mathbf{i}+8 \mathbf{j}+4 \mathbf{k}$

Answer

The cross product, $\mathbf{u} \times \mathbf{v}$ gives a vector orthogonal to both \mathbf{u} and \mathbf{v} :
(a) Let $\mathbf{n}=\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 0 \\ 0 & 1 & 2\end{array}\right|=\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)$. The length of \mathbf{n} is $|\mathbf{n}|=$ $\sqrt{2^{2}+(-2)^{2}+1^{2}}=3$
A unit vector orthogonal to both \mathbf{u} and \mathbf{v} is

$$
\hat{\mathbf{n}}=\frac{\mathbf{n}}{|\mathbf{n}|}=\frac{1}{3}\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right)=\left(\begin{array}{c}
\frac{2}{3} \\
\frac{-2}{3} \\
\frac{1}{3}
\end{array}\right) .
$$

(b) Let $\mathbf{n}=\mathbf{u} \times \mathbf{v}=\left|\begin{array}{llc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 2 & 1 \\ 4 & 1 & 3\end{array}\right|=\left(\begin{array}{c}5 \\ -5 \\ -5\end{array}\right)$. The length of \mathbf{n} is $|\mathbf{n}|=5 \sqrt{3}$

A unit vector orthogonal to both \mathbf{u} and \mathbf{v} is

$$
\hat{\mathbf{n}}=\frac{\mathbf{n}}{|\mathbf{n}|}=\frac{1}{5 \sqrt{3}}\left(\begin{array}{c}
5 \\
-5 \\
-5
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{-1}{\sqrt{3}} \\
\frac{-1}{\sqrt{3}}
\end{array}\right)
$$

(c) Let $\mathbf{n}=\mathbf{u} \times \mathbf{v}=\left|\begin{array}{lll}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 3 \\ 5 & 8 & 4\end{array}\right|=\left(\begin{array}{c}-20 \\ 15 \\ -5\end{array}\right)$. The length of \mathbf{n} is $|\mathbf{n}|=$ $\sqrt{650}=5 \sqrt{26}$
A unit vector orthogonal to both \mathbf{u} and \mathbf{v} is

$$
\hat{\mathbf{n}}=\frac{\mathbf{n}}{|\mathbf{n}|}=\frac{1}{5 \sqrt{26}}\left(\begin{array}{c}
-20 \\
15 \\
-5
\end{array}\right)=\left(\begin{array}{c}
\frac{-4}{\sqrt{26}} \\
\frac{3}{\sqrt{26}} \\
\frac{-1}{\sqrt{26}}
\end{array}\right) .
$$

