Question

a) Let a be a fixed non-zero complex number. Show that a^{i} has infinitely many values, and that they all lie on a straight line through the origin in the complex plane.
b) State Cauchy's integral formula expressing the nth derivative $f^{(n)}(a)$ at a point a in terms of a contour integral. Your statement should include conditions under which the formula holds.
Evaluate the following integrals, where C denoted the unit circle:
i) $\int_{C} \frac{\cos z d z}{z^{3}}$
ii) $\int_{C} \frac{e^{z} d z}{4 z^{3}-12 z^{2}+9 z-2}$

Answer

a) $a^{i}=\exp (i \log a)=\exp (i(\ln |a|+i(\operatorname{Arg} a+2 n \pi)) \quad n \in \mathbf{Z}$

$$
=\exp (i \ln |a|) \exp (-\operatorname{Arg} a) \exp (-2 n \pi)
$$

The first two factors are constants, and the third gives an infinite sequence of distinct real numbers. Hence we have infinitely many different values, all on the line $\arg z=\ln |a|$.

$$
\begin{aligned}
a^{\sqrt{2}} & =\exp (\sqrt{2} \log a)=\exp (\sqrt{2}(\ln |a|+i(\operatorname{Arg} a+2 n \pi)) \\
& =\exp (\sqrt{2} \ln |a|) \exp (i \sqrt{2}-\operatorname{Arg} a) \exp (i 2 \sqrt{2} n \pi)
\end{aligned}
$$

These all lie on the circle, centre 0 , radius $|a|^{\sqrt{2}}$. Since the members of the sequence $2 \sqrt{2} n \pi$ are all different $\bmod 2 \pi$, since $\sqrt{2}$ is irrational, we have infinitely many different values.
b) If $f(z)$ is differentiable inside and on a closed contour C, and if a is inside C, then
$f^{(n)}(a)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{(z-a)^{n+1}} d z$
i) with $f(z)=\cos z, \quad a=0, \quad n=2$,

$$
\int_{C} \frac{\cos z}{z^{3}} d z=\frac{2 \pi i}{2!} f^{\prime \prime}(0)=\pi i(-\cos 0)=-\pi i
$$

ii) The denominator factorises as $(z-2)(2 z-1)^{2}=4(z-2)\left(z-\frac{1}{2}\right)^{2}$
so with $f(z)=\frac{e^{z}}{4(z-2)}, \quad a=\frac{1}{2}, \quad n=1$
$\int_{C} \frac{e^{z} d z}{4(z-2)\left(z-\frac{1}{2}\right)^{2}}=\frac{2 \pi i}{1!} f^{\prime}\left(\frac{1}{2}\right)$
Now $f^{\prime}(z)=\frac{(z-2) e^{z}-e^{z}}{4(z-2)^{2}}=\frac{(z-3) e^{z}}{4(z-2)^{2}}$
So $f^{\prime}\left(\frac{1}{2}\right)=\frac{-\frac{5}{2} e^{\frac{1}{2}}}{4\left(-\frac{3}{2}\right)^{2}}=-\frac{5}{18} e^{\frac{1}{2}} . \quad$ So $\int_{C}=-\frac{5}{9} \pi i e^{\frac{1}{2}}$

