Question

- a) Show that the function $f(z) = \overline{z}^2 z$ is differentiable only at z = 0.
- b) Prove that $|\sin z|^2 + |\cos z|^2 \ge 1$, with equality if and only if z is a real number.
- c) Evaluate the integral $\int_C \tan z dz$, where C is the straight line segment from z = 0 to $z = \frac{1}{2}\pi(1+i)$. Express your answer in the form a + ib where a and b are real.

Answer

a)
$$f(z) = \bar{z}^2 z = (x - iy)^2 (x + iy) = x^3 + xy^2 + i(-x^2y - y^3) = u + iv$$

Now $\frac{\partial u}{\partial x} = 3x^2 + y^2$ $\frac{\partial v}{\partial y} = -x^2 - 3y^2$
 $\frac{\partial u}{\partial y} = 2xy$ $\frac{\partial v}{\partial x} = -2xy$
Now $\frac{\partial u}{\partial y} \equiv -\frac{\partial v}{\partial x}$ but $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ iff $3x^2 + y^2 = -x^2 - 3y^2$
iff $4x^2 = -4y^2$, iff $x = y = 0$.
So the Cauchy Piemenn equations are satisfied only at $z = 0$.

So the Cauchy-Riemann equations are satisfied only at z = 0. The partial derivatives are continuous there (in fact everywhere), so f(z) is differentiable at z = 0.

b) Using the various facts about trigonometric functions we have | sin z|² + | cos z|² = sin² x cosh² y + cos² x sinh² y + cos² x cosh² y + sin² x sinh² y = cosh² y + sinh² y = cosh 2y ≥ 1 with equality iff y = 0 i.e. if z is real.
c) ∫_C tan zdz = [-Log(cos z)]₀^{(1+i)^π/2} (integral of a continuous derivative) = -Log(cos(^π/₂ + i^π/₂)) = -Log(-sin(i^π/₂))

$$= -\operatorname{Log}(\cos(\frac{\pi}{2} + i\frac{\pi}{2})) = -\operatorname{Log}(-\sin(i\frac{\pi}{2}))$$
$$= -\operatorname{Log}(-i\sinh\frac{\pi}{2}) = -\ln(\sinh\frac{\pi}{2} + i\frac{\pi}{2})$$

(Note: $\cos z = \cos x \cosh y - i \sin x \sinh y$, so $Re(\cos z) \ge 0$ along C. i.e. $-\frac{\pi}{2} < \arg z \frac{\pi}{2}$ along C, hence we do not encounter singularities for $Log(\cos z)$. I do not expect this reasoning to appear in the students' answers.)