Question

a) Show that the function $f(z)=\bar{z}^{2} z$ is differentiable only at $z=0$.
b) Prove that $|\sin z|^{2}+|\cos z|^{2} \geq 1$, with equality if and only if z is a real number.
c) Evaluate the integral $\int_{C} \tan z d z$, where C is the straight line segment from $z=0$ to $z=\frac{1}{2} \pi(1+i)$. Express your answer in the form $a+i b$ where a and b are real.

Answer

a) $f(z)=\bar{z}^{2} z=(x-i y)^{2}(x+i y)=x^{3}+x y^{2}+i\left(-x^{2} y-y^{3}\right)=u+i v$

Now $\frac{\partial u}{\partial x}=3 x^{2}+y^{2} \quad \frac{\partial v}{\partial y}=-x^{2}-3 y^{2}$

$$
\frac{\partial u}{\partial y}=2 x y \quad \frac{\partial v}{\partial x}=-2 x y
$$

Now $\frac{\partial u}{\partial y} \equiv-\frac{\partial v}{\partial x} \quad$ but $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ iff $3 x^{2}+y^{2}=-x^{2}-3 y^{2}$ iff $4 x^{2}=-4 y^{2}$, iff $x=y=0$.
So the Cauchy-Riemann eqautions are satisfied only at $z=0$. The partial derivatives are continuous there (in fact everywhere), so $f(z)$ is differentiable at $z=0$.
b) Using the various facts about trigonometric functions we have

$$
\begin{gathered}
|\sin z|^{2}+|\cos z|^{2}=\sin ^{2} x \cosh ^{2} y+\cos ^{2} x \sinh ^{2} y \\
+\cos ^{2} x \cosh ^{2} y+\sin ^{2} x \sinh ^{2} y
\end{gathered}
$$

$=\cosh ^{2} y+\sinh ^{2} y=\cosh 2 y \geq 1$ with equality iff $y=0$ i.e. if z is real.
c) $\int_{C} \tan z d z=[-\log (\cos z)]_{0}^{(1+i) \frac{\pi}{2}}$ (integral of a continuous derivative)
$=-\log \left(\cos \left(\frac{\pi}{2}+i \frac{\pi}{2}\right)\right)=-\log \left(-\sin \left(i \frac{\pi}{2}\right)\right)$
$=-\log \left(-i \sinh \frac{\pi}{2}\right)=-\ln \left(\sinh \frac{\pi}{2}+i \frac{\pi}{2}\right.$
(Note: $\cos z=\cos x \cosh y-i \sin x \sinh y$, so $\operatorname{Re}(\cos z) \geq 0$ along C. i.e. $-\frac{\pi}{2}<\arg z \frac{\pi}{2}$ along C, hence we do not encounter singularities for $\log (\cos z)$. I do not expect this reasoning to appear in the students' answers.)

