Question

Chebyshev's equation may be written

$$
\frac{d}{d x}\left[\left(1-x^{2}\right)^{\frac{1}{2}} \frac{d y}{d x}\right]+n^{2}\left(1-x^{2}\right)^{-\frac{1}{2}} y=0
$$

where n is a positive integer. The solutions which satisfy the boundary conditions $T_{n}(-1)=(-1)^{n}$ and $T_{n}(1)=1$ are polynomials of degree n. Find the first three Chebyshev polynomials. Prove that if $m \neq n$ then

$$
\int_{-1}^{1}\left(1-x^{2}\right)^{-\frac{1}{2}} T_{m}(x) T_{n}(x) d x=0
$$

Answer

To find the Chebyshev polynomials $T_{n}(x)$ one substitutes a general polynomial into the differential equation and uses the boundary conditions. We illustrate this with $T_{2}(x)$.
The general form of $T_{2}(x)$ is a quadratic so that $T_{2}(x)=a_{0}+a_{1} x+a_{2} x^{2}$. Using $T_{2}(1)=1$ gives $a_{0}+a_{1}+a_{2}=1$. Using $T_{2}(-1)=1$ gives $a_{0}-a_{1}+a_{2}=1$. Subtracting the equations gives $a_{1}=0$ and hence $a_{0}=1-a_{2}$. Writing a_{2} as a we see that $T_{2}(x)=a x^{2}+(1-a)$.
We now substitute this into Chebyshev's equation (with $n=2$) and obtain $\left\{2 a\left(1-2 x^{2}\right)+4 a x^{2}+4(1-a)\right\}\left(1-x^{2}\right)^{-1 / 2}=0, \quad \Rightarrow \quad 4-2 a=0$. So that $a=2$ and $T_{2}(x)=2 x^{2}-1$.
Now to show orthogonality. since T_{n} and T_{m} are solutions of Chebeyshev's equation we have:

$$
\begin{align*}
\frac{d}{d t}\left[\left(1-x^{2}\right) \frac{d T_{n}}{d x}\right]+n^{2}\left(1-x^{2}\right)^{-1 / 2} T_{n} & =0 \tag{1}\\
\frac{d}{d t}\left[\left(1-x^{2}\right) \frac{d T_{m}}{d x}\right]+m^{2}\left(1-x^{2}\right)^{-1 / 2} T_{m} & =0 \tag{2}
\end{align*}
$$

Multiplying equation (1) by T_{m} and equation (2) by T_{n}, subtracting and integrating by parts between -1 and 1 gives:

$$
\begin{aligned}
& \left(n^{2}-m^{2}\right) \int_{-1}^{1}\left(1-x^{2}\right)^{-1 / 2} T_{n} T_{m} d x \\
& =\int_{-1}^{1}\left\{T_{n}\left[\frac{d}{d x}\left(1-x^{2}\right) \frac{d T_{m}}{d x}\right]-T_{m}\left[\frac{d}{d x}\left(1-x^{2}\right) \frac{d T_{n}}{d x}\right]\right\} d x \\
& =\left[\left(1-x^{2}\right)\left(T_{n} \frac{d T_{m}}{d x}-T_{m} \frac{d T_{n}}{d x}\right)\right]_{-1}^{1}
\end{aligned}
$$

$-\int_{-1}^{1}\left\{\left(1-x^{2}\right) \frac{d T_{n}}{d x} \frac{d T_{m}}{d x}-\left(1-x^{2}\right) \frac{d T_{m}}{d x} \frac{d T_{n}}{d x}\right\} d x$
$=0$
Since the first term vanishes at ± 1, and the terms and the integral cancel.

