Question

Reduce each of the following equations to normal form and hence find their general solutions.

(a) $y'' + \frac{2}{x}y' + 4y = 0$ (b) $y'' + 2\sin x \, y' + \cos x (1 - \cos x)y = 0$

Answer

(a)
$$y'' + \frac{2}{x}y' + 4y = 0$$
. So $P(x) = \frac{2}{x}$ and $Q(x) = 4$.
We transform to a new variable $u(x)$ where $y(x) = u(x)v(x)$ and
 $v(x) = \exp\left(-\frac{1}{2}\int Pdx\right) = \exp\int -\frac{dx}{x} = \exp(-\ln x) = \frac{1}{x}$.
So $y(x) = \frac{u(x)}{x}$.
The equation for $u(x)$ is $u'' + q(x)u = 0$ where $q = Q - \frac{1}{4}P^2 - \frac{1}{2}P'$
Substituting for P and Q we find $q = 4 - \frac{1}{x^2} + \frac{1}{x^2} = 4$.
So that $u'' + 4u = 0$, $\Rightarrow u(x) = A\cos 2x + B\sin 2x$.
Hence $y(x) = \frac{1}{x}(A\cos 2x + B\sin 2x)$.

(b)
$$y'' + 2 \sin xy' + \cos x(1 - \cos x)y$$
.
So $P(x) = 2 \sin x$ and $Q(x) = \cos x(1 - \cos x)$.
We transform to a new variable $u(x)$ where $y(x) = u(x)v(x)$ and
 $v(x) = \exp\left(-\frac{1}{2}\int Pdx\right) = \exp\int -\sin xdx = e^{\cos x}$.
So $y(x) = e^{\cos x}u(x)$.
The equation for $u(x)$ is $u'' + q(x)u = 0$ where $q = Q - \frac{1}{4}P^2 - \frac{1}{2}P'$
Substituting for P and Q we find $q = \cos x - \cos^2 x - \sin^2 x - \cos x = -1$.
So that $u'' - u = 0$, $\Rightarrow u(x) = Ae^x + Be^{-x}$.
Hence $y(x) = e^{\cos x}(Ae^x + Be^{-x})$.