Question

Reduce each of the following equations to normal form and hence find their general solutions.
(a) $y^{\prime \prime}+\frac{2}{x} y^{\prime}+4 y=0$
(b) $y^{\prime \prime}+2 \sin x y^{\prime}+\cos x(1-\cos x) y=0$

Answer

(a) $y^{\prime \prime}+\frac{2}{x} y^{\prime}+4 y=0$. So $P(x)=\frac{2}{x}$ and $Q(x)=4$.

We transform to a new variable $u(x)$ where $y(x)=u(x) v(x)$ and $v(x)=\exp \left(-\frac{1}{2} \int P d x\right)=\exp \int-\frac{d x}{x}=\exp (-\ln x)=\frac{1}{x}$.
So $y(x)=\frac{u(x)}{x}$.
The equation for $u(x)$ is $u^{\prime \prime}+q(x) u=0$ where $q=Q-\frac{1}{4} P^{2}-\frac{1}{2} P^{\prime}$
Substituting for P and Q we find $q=4-\frac{1}{x^{2}}+\frac{1}{x^{2}}=4$.
So that $u^{\prime \prime}+4 u=0, \quad \Rightarrow \quad u(x)=A \cos 2 x+B \sin 2 x$.
Hence $y(x)=\frac{1}{x}(A \cos 2 x+B \sin 2 x)$.
(b) $y^{\prime \prime}+2 \sin x y^{\prime}+\cos x(1-\cos x) y$.

So $P(x)=2 \sin x$ and $Q(x)=\cos x(1-\cos x)$.
We transform to a new variable $u(x)$ where $y(x)=u(x) v(x)$ and
$v(x)=\exp \left(-\frac{1}{2} \int P d x\right)=\exp \int-\sin x d x=e^{\cos x}$.
So $y(x)=e^{\cos x} u(x)$.
The equation for $u(x)$ is $u^{\prime \prime}+q(x) u=0$ where $q=Q-\frac{1}{4} P^{2}-\frac{1}{2} P^{\prime}$
Substituting for P and Q we find $q=\cos x-\cos ^{2} x-\sin ^{2} x-\cos x=-1$.
So that $u^{\prime \prime}-u=0, \quad \Rightarrow \quad u(x)=A e^{x}+B e^{-x}$.
Hence $y(x)=e^{\cos x}\left(A e^{x}+B e^{-x}\right)$.

