Exam Question

Topic: Fourier Series
Find the Fourier Series for the function

$$
f(x)=\pi-|x| \quad(-\pi \leq x \leq \pi)
$$

Solution

f is an even function so $b_{n}=0$ for all n.

$$
\begin{aligned}
a_{0} & =\text { area of triangle under the graph of } f=\pi \\
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi}(\pi-x) \cos n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi}(\pi \cos n x-x \cos n x) d x \\
& =\frac{2}{\pi}\left[\pi \frac{\sin n x}{n}-x \frac{\sin n x}{n}-\frac{\cos n x}{n^{2}}\right]_{0}^{\pi} \\
& =\frac{2}{\pi}\left[-\frac{\cos n \pi}{n^{2}}+\frac{1}{n^{2}}\right]=\frac{2}{n^{2} \pi}\left(1-(-1)^{n}\right)
\end{aligned}
$$

So the Fourier Series is

$$
\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi}\left(1-(-1)^{n}\right) \cos n x
$$

