QUESTION

(a) Show that $f(z)=|z|^{2}$ is not analytic anywhere.
(b) Show that $f(z)=e^{z}$ is analytic everywhere.

ANSWER
(a) $z=x+i y,|z|^{2}=x^{2}+y^{2}, u=x^{2}, v=y^{2}$ $u_{x}=2 x \neq v_{y}=2 y$ Hence not analytic.
(b) $e^{z}=e^{x+i y}=e^{x}(\cos y+i \sin y), u=e^{x} \cos y, v=e^{x} \sin y$ $u_{x}=e^{x} \cos y=v_{y}, u_{y}=-e^{x} \sin y=-v_{x}$
The partial derivatives are continuous and hence the function is analytic.

