Question

Prove that the identity map $g : \mathbf{H} \to \mathbf{H}$, defined by g(x) = x, gives a homeomorphism between the metric space $(\mathbf{H}, \mathbf{d}_{\mathbf{H}})$ and the metric space (\mathbf{H}, f) , where f is as defined in Problem 1 of this sheet.

Answer

Let $\bigcup_{\epsilon}(x) = \{y \in \mathbf{H} | d_{\mathbf{H}}(x, y) < \epsilon\}$ and $\bigcup_{\epsilon}^{f}(x) = \{y \in \mathbf{H} | f(x, y) < \epsilon\}$

First note that g is a bijection, and so it remains only to show that $g : (\mathbf{H}, d_{\mathbf{H}}) \to (\mathbf{H}, f)$ and $g : (\mathbf{H}, f) \to (\mathbf{H}, d_{\mathbf{H}})$ are continuous (as $g^{-1} = g$).

 $g: (\mathbf{H}, d_{\mathbf{H}}) \to (\mathbf{H}, f)$ is continuous at a if for every $\epsilon > 0$ there is $\delta > 0$ so that $g(\bigcup_{delta}(a)) \subseteq \bigcup_{\epsilon}^{f}(a)$; that is, that $\bigcup_{delta}(a) \subseteq \bigcup_{\epsilon}^{f}(a)$.

• If
$$d_{\mathbf{H}}(a, x) < \delta$$
, then $f(a, x) = \frac{d_{\mathbf{H}}(a, x)}{1 + d_{\mathbf{H}}(a, x)}$

 $< d_{\mathbf{H}}(a, x) < \delta,$

so we may take $\delta = \epsilon$.

Going in the other direction, consider $g: (\mathbf{H}, f) \to (\mathbf{H}, d_{\mathbf{H}})$.

Given $\epsilon > 0$, choose $\delta = \frac{\epsilon}{1+\epsilon}$.

Then, if $f(a, x) = \frac{d_{\mathbf{H}}(a, x)}{1 + d_{\mathbf{H}}(a, x)} < \delta = \frac{\epsilon}{1 + \epsilon}$ then $d_{\mathbf{H}}(a, x) < \epsilon$ as desired (since $g(t) = \frac{t}{1 + t}$ is increasing in t).