Question

Consider the function function $f: \mathbf{H} \times \mathbf{H} \rightarrow \mathbf{R}$ defined by

$$
f(x, y)=\frac{\mathrm{d}_{\mathbf{H}}(x, y)}{1+\mathrm{d}_{\mathbf{H}}(x, y)}
$$

Prove that f is a metric on \mathbf{H}. Also, prove that the diameter of \mathbf{H} with the metric f is finite, where the diameter $\operatorname{diam}(\mathbf{H}, f)$ of the metric space (\mathbf{H}, f) is defined by

$$
\operatorname{diam}(\mathbf{H}, f)=\sup \{f(x, y) \mid x, y \in \mathbf{H}\}
$$

Answer

Note that the first two conditions of a metric, that $f(x, y) \geq 0$ with equality if and only if $x=y$ and that $f(x, y)=f(y, x)$, are satisfied since they hold true for $d_{\mathbf{H}}(\cdot, \cdot)$. To check the triangle inequality, assume that it fails for $f(\cdot, \cdot)$, so that there are parts x, y, z, so that $f(x, y)>f(x, y)+f(y, z)$. Then,

$$
\begin{gathered}
\frac{d_{\mathbf{H}}(x, z)}{1+d_{\mathbf{H}}(x, z)}>\frac{d_{\mathbf{H}}(x, y)}{1+d_{\mathbf{H}}(x, y)}+\frac{d_{\mathbf{H}}(y, z)}{1+d_{\mathbf{H}}(y, z)} \\
d_{\mathbf{H}}(x, z)\left(1+d_{\mathbf{H}}(x, y)\right)\left(1+d_{\mathbf{H}}(y, z)\right)> \\
d_{\mathbf{H}}(x, y)\left(1+d_{\mathbf{H}}(x, z)\right)\left(1+d_{\mathbf{H}}(y, z)\right)+d_{\mathbf{H}}(y, z)\left(1+d_{\mathbf{H}}(x, z)\right)\left(1+d_{\mathbf{H}}(x, y)\right)
\end{gathered}
$$

Simplifying:

$$
\begin{aligned}
& d_{\mathbf{H}}(x, z)+d_{\mathbf{H}}(x, z) d_{\mathbf{H}}(x, y)+d_{\mathbf{H}}(x, z) d_{\mathbf{H}}(y, z)> \\
& d_{\mathbf{H}}(x, y)+d_{\mathbf{H}}(x, y) d_{\mathbf{H}}(x, z)+d_{\mathbf{H}}(x, y) d_{\mathbf{H}}(y, z) \\
& +d_{\mathbf{H}}(y, z)+d_{\mathbf{H}}(y, z) d_{\mathbf{H}}(x, z)+d_{\mathbf{H}}(y, z) d_{\mathbf{H}}(x, y) \\
& +d_{\mathbf{H}}(x, y) d_{\mathbf{H}}(x, z) d_{\mathbf{H}}(y, z)
\end{aligned}
$$

Thus:
$d_{\mathbf{H}}(x, z)>d_{\mathbf{H}}(x, y)+d_{\mathbf{H}}(y, z)+$ stuff $>d_{\mathbf{H}}(x, y)+d_{\mathbf{H}}(y, z)$
But this is a contradiction, since $d_{\mathbf{H}}(\cdot, \cdot)$ is a metric. Hence, $f(\cdot, \cdot)$ satisfies the triangle inequality and hence is a metric.

$$
\begin{aligned}
\operatorname{diam}(\mathbf{H}, f) & =\sup \{f(x, y) \mid x, y \in \mathbf{H}\} \\
& =\sup \left\{\left.\frac{d_{\mathbf{H}}(x, y)}{1+d_{\mathbf{H}}(x, y)} \right\rvert\, x, y \in \mathbf{H}\right\}
\end{aligned}
$$

Note that $\frac{d_{\mathbf{H}}(x, y)}{1+d_{\mathbf{H}}(x, y)}<1$ for all $x, y \in \mathbf{H}$. Moreover,
$f(i, \lambda i)=\frac{d_{\mathbf{H}}(i, \lambda i)}{1+d_{\mathbf{H}}(i, \lambda i)}=\frac{\ln (\lambda)}{1+\ln (\lambda)} \rightarrow 1$ as $\lambda \rightarrow \infty$,
and so $\operatorname{diam}(\mathbf{H}, f)=1$.

