Question

Consider the function function $f: \mathbf{H} \times \mathbf{H} \to \mathbf{R}$ defined by

$$f(x,y) = \frac{\mathrm{d}_{\mathbf{H}}(x,y)}{1 + \mathrm{d}_{\mathbf{H}}(x,y)}.$$

Prove that f is a metric on **H**. Also, prove that the *diameter* of **H** with the metric f is finite, where the diameter diam (\mathbf{H}, f) of the metric space (\mathbf{H}, f) is defined by

$$\operatorname{diam}(\mathbf{H}, f) = \sup\{f(x, y) \mid x, y \in \mathbf{H}\}.$$

Answer

Note that the first two conditions of a metric, that $f(x, y) \ge 0$ with equality if and only if x = y and that f(x, y) = f(y, x), are satisfied since they hold true for $d_{\mathbf{H}}(\cdot, \cdot)$. To check the triangle inequality, assume that it fails for $f(\cdot, \cdot)$, so that there are parts x, y, z, so that f(x, y) > f(x, y) + f(y, z). Then,

$$\frac{d_{\mathbf{H}}(x,z)}{1+d_{\mathbf{H}}(x,z)} > \frac{d_{\mathbf{H}}(x,y)}{1+d_{\mathbf{H}}(x,y)} + \frac{d_{\mathbf{H}}(y,z)}{1+d_{\mathbf{H}}(y,z)}$$
$$d_{\mathbf{H}}(x,z)(1+d_{\mathbf{H}}(x,y))(1+d_{\mathbf{H}}(y,z)) > d_{\mathbf{H}}(x,y)(1+d_{\mathbf{H}}(x,z))(1+d_{\mathbf{H}}(y,z)) + d_{\mathbf{H}}(y,z)(1+d_{\mathbf{H}}(x,z))(1+d_{\mathbf{H}}(x,y))$$

Simplifying:

$$d_{\mathbf{H}}(x, z) + d_{\mathbf{H}}(x, z)d_{\mathbf{H}}(x, y) + d_{\mathbf{H}}(x, z)d_{\mathbf{H}}(y, z) > d_{\mathbf{H}}(x, y) + d_{\mathbf{H}}(x, y)d_{\mathbf{H}}(x, z) + d_{\mathbf{H}}(x, y)d_{\mathbf{H}}(y, z) + d_{\mathbf{H}}(y, z) + d_{\mathbf{H}}(y, z)d_{\mathbf{H}}(x, z) + d_{\mathbf{H}}(y, z)d_{\mathbf{H}}(x, y) + d_{\mathbf{H}}(x, y)d_{\mathbf{H}}(x, z)d_{\mathbf{H}}(y, z)$$

Thus:

$$d_{\mathbf{H}}(x,z) > d_{\mathbf{H}}(x,y) + d_{\mathbf{H}}(y,z) + \operatorname{stuff} > d_{\mathbf{H}}(x,y) + d_{\mathbf{H}}(y,z)$$

But this is a contradiction, since $d_{\mathbf{H}}(\cdot, \cdot)$ is a metric. Hence, $f(\cdot, \cdot)$ satisfies the triangle inequality and hence is a metric.

diam(**H**, f) = sup{
$$f(x, y) | x, y \in \mathbf{H}$$
}
= sup $\left\{ \frac{d_{\mathbf{H}}(x, y)}{1 + d_{\mathbf{H}}(x, y)} \middle| x, y \in \mathbf{H} \right\}$

Note that $\frac{d_{\mathbf{H}}(x,y)}{1+d_{\mathbf{H}}(x,y)} < 1$ for all $x, y \in \mathbf{H}$. Moreover, $d_{\mathbf{H}}(i,\lambda i) = \ln(\lambda)$

$$f(i,\lambda i) = \frac{d_{\mathbf{H}}(i,\lambda i)}{1 + d_{\mathbf{H}}(i,\lambda i)} = \frac{\ln(\lambda)}{1 + \ln(\lambda)} \to 1 \text{ as } \lambda \to \infty,$$

and so $\operatorname{diam}(\mathbf{H}, f) = 1$.