Question

Let T be a triangle in the hyperbolic plane with angles $\alpha, 0$, and $\frac{\pi}{2}$. Prove that $\cosh (b) \sin (\alpha)=1$, where b is the hyperbolic length of the side of T opposite the vertex with angle 0 . [Note that since the triangle is not compact, the hyperbolic trigonometric rules as we have stated and proved them in class do not apply.]

Answer
Using the transitivity properties of $\mathrm{Möb}^{+}(\mathbf{H})$, assume that the vertex with angle 0 is at ∞, the vertex with angle $\frac{\pi}{2}$ is at i, and the side joining the vertices with angles $\frac{\pi}{2}$ and α lies on the unit circle S_{1}, as pictured below:

So, by previous problem, $\cosh (b)=\csc (\alpha)$ and so $\cosh (b) \sin (\alpha)=1$ as desired.

