Question

Show that the following formula holds in \mathbf{H} :

$$
\cosh \left(\mathrm{d}_{\mathbf{H}}(z, w)\right)=1+\frac{|z-w|^{2}}{2 \operatorname{Im}(z) \operatorname{Im}(w)} .
$$

Answer

Start by showing that the RHSide of the equation is invariant under Möb ${ }^{+}(\mathbf{H})$: that is, if $m \in \operatorname{Möb}^{+}(\mathbf{H})$, then

$$
\frac{|z-w|^{2}}{2 \operatorname{Im}(z) \operatorname{Im}(w)}=\frac{|m(z)-m(w)|^{2}}{2 \operatorname{Im}(m(z)) \operatorname{Im}(m(w))}:
$$

Write $m(z)=\frac{a z+b}{c z+d} a, b, c, d \in \mathbf{R}, a d-b c=1$
Then:
(1)

$$
\begin{aligned}
&|m(z)-m(w)|^{2}=\left|m^{\prime}(z)\right|\left|m^{\prime}(w)\right||z-w|^{2} \\
&=\frac{|z-w|^{2}}{|c z+d|^{2}|c w+d|^{2}} \\
& m(z)-m(w)=\frac{a z+b}{c z+d}-\frac{a w+b}{c w+d} \\
&=\frac{(a z+b)(c w+d)-(a w+b)(c z+d)}{(c z+d)(c w+d)} \\
&=\frac{z-w}{(c z+d)(c w+d)} \\
& m^{\prime}(z)=\frac{1}{(c z+d)^{2}}
\end{aligned}
$$

(2)

$$
\begin{aligned}
\operatorname{Im}(m(z)) & =\operatorname{Im}\left(\frac{a z+b}{c z+d} \cdot \frac{c \bar{z}+d}{c \bar{z}+d}\right) \\
& =\operatorname{Im}\left(\frac{a c z \bar{z}+b c \bar{z}+a d z+b d}{(c z+d)(c \bar{z}+d)}\right) \\
& =\frac{\operatorname{Im}(z)}{(c z+d)(c \bar{z}+d)}
\end{aligned}
$$

and we see that (\star) is satisfied.
Now, given $z, w \in \mathbf{H}$, choose $m \in \operatorname{Möb}^{+}(\mathbf{H})$ so that
$\left(m(z)=i\right.$ and $m(w)=\lambda i(\lambda>1)$, where $\ln (\lambda)=d_{\mathbf{H}}(z, w)$: then

- $\cosh \left(d_{b f H}(z, w)\right)=\cosh (\ln (\lambda))=\frac{1}{2}\left(\lambda+\frac{1}{\lambda}\right)=\frac{\lambda^{2}+1}{2 \lambda}$

$$
\begin{aligned}
1+\frac{|z-w|^{2}}{2 \operatorname{Im}(z) \operatorname{Im}(w)} & =1+\frac{|i-\lambda i|^{2}}{2 \cdot 1 \cdot \lambda} \\
& =1+\frac{(\lambda-1)^{2}}{2 \lambda} \\
& =\frac{2 \lambda+\lambda^{2}-2 \lambda+1}{2 \lambda} \\
& =\frac{\lambda^{2}+1}{2 \lambda} \text { as desired }
\end{aligned}
$$

