QUESTION A box contains 12 balls numbered from 1 to 12 . The balls numbered 1 to 5 are red, those numbered 6 to 9 are white and the remaining three balls are blue. Three balls are to be drawn out at random without replacement from the box. Let A denote the event that each number drawn will be even, B the event that no blue ball will be drawn and C the event that one ball of each colour will be drawn. Calculate
(i) $P(A)$
(ii) $P(B)$
(iii) $P(C)$
(iv) $P(A \cap C)$
(v) $P(B \cup C)$
(vi) $P(A \cup B)$

ANSWER
(i) $A=\{$ all even $\}$

$$
\begin{aligned}
P(A) & =\frac{\binom{6}{3}}{\binom{12}{3}} \\
& =\frac{6}{12} \times \frac{5}{11} \times \frac{4}{10}=\frac{1}{11}
\end{aligned}
$$

(ii) $B=\{$ no blue ball $\}$

$$
\begin{aligned}
P(B) & =\frac{\binom{9}{3}}{\binom{12}{3}} \\
& =\frac{9}{12} \times \frac{8}{11} \times \frac{7}{10}=\frac{21}{55}
\end{aligned}
$$

(iii) $C=\{$ one of each colour $\}$

$$
\begin{aligned}
P(C) & =\frac{\binom{5}{1}\binom{4}{1}\binom{3}{1}}{\binom{12}{3}} \\
& =\frac{5}{12} \times \frac{4}{11} \times \frac{3}{10} \times 3!=\frac{3}{11}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
P(A \cap C) & =P(\text { all even } \cap \text { one of each colour }) \\
& =\frac{\binom{2}{1}\binom{2}{1}\binom{2}{1}}{\binom{12}{3}} \\
& =\frac{2}{12} \times \frac{2}{11} \times \frac{2}{10} \times 3!=\frac{2}{55}
\end{aligned}
$$

(v) $P(B \cup C)=P(B)+P(C)-P(B \cap C)$ by addition theorem. $P(B \cap C)=$ $P($ no blue \cap one of each colour $=0$
therefore $P(B \cup C)=P(B)+P(C)=\frac{36}{55}$
(vi) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$ by addition theorem. $P(A \cap B)=$ $P\left(\right.$ all even \cap no blue $=\frac{4}{12} \times \frac{3}{11} \times \frac{2}{10}=\frac{1}{55}$ therefore $P(A \cup B)=\frac{1}{11}+\frac{21}{55}-\frac{1}{55}=\frac{36}{55}$

