Question

A particle with position vector \mathbf{r} relative to an origin O, rotates with angular velocity $\boldsymbol{\omega}$ about an axis through O. Show that the magnitude of the centripetal acceleration of the particle, $\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$, is $\omega^2 d$, where d is the perpendicular distance of the particle from the axis of rotation.

Answer

Now $\mathbf{r} = \lambda \boldsymbol{\omega} + \mathbf{d}$ where $\boldsymbol{\omega}, \mathbf{d}$ are perpendicular. $\Rightarrow \boldsymbol{\omega} \cdot \mathbf{d} = 0$ Therefore $\mathbf{r} \cdot \boldsymbol{\omega} = \lambda \omega^2 + \mathbf{d} \cdot \boldsymbol{\omega} = \lambda \omega^2$ Therefore $\mathbf{r} = \frac{1}{\omega^2} (\mathbf{r} \cdot \boldsymbol{\omega}) \boldsymbol{\omega} + \mathbf{d}$

Centripetal acceleration =
$$\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$

= $\boldsymbol{\omega} \times \left(\boldsymbol{\omega} \times \left(\frac{1}{\omega^2} (\mathbf{r} \cdot \boldsymbol{\omega}) \boldsymbol{\omega} + \mathbf{d} \right) \right)$
= $\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{d})$ as $\boldsymbol{\omega} \times \boldsymbol{\omega} = 0$
= $(\boldsymbol{\omega} \cdot \mathbf{d}) \boldsymbol{\omega} - \boldsymbol{\omega} \cdot \boldsymbol{\omega} \mathbf{d}$ as $\boldsymbol{\omega} \cdot \mathbf{d} = 0$
= $-\omega^2 \mathbf{d}$ as required