## Question

A particle with position vector $\mathbf{r}$ relative to an origin $O$, rotates with angular velocity $\boldsymbol{\omega}$ about an axis through O . Show that the magnitude of the centripetal acceleration of the particle, $\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \mathbf{r})$, is $\omega^{2} d$, where $d$ is the perpendicular distance of the particle from the axis of rotation.

## Answer



Now $\mathbf{r}=\lambda \boldsymbol{\omega}+\mathbf{d}$ where $\boldsymbol{\omega}, \mathbf{d}$ are perpendicular. $\Rightarrow \boldsymbol{\omega} \cdot \mathbf{d}=0$
Therefore $\mathbf{r} \cdot \boldsymbol{\omega}=\lambda \omega^{2}+\mathbf{d} \cdot \boldsymbol{\omega}=\lambda \omega^{2}$
Therefore $\mathbf{r}=\frac{1}{\omega^{2}}(\mathbf{r} \cdot \boldsymbol{\omega}) \boldsymbol{\omega}+\mathbf{d}$

$$
\begin{aligned}
\text { Centripetal acceleration } & =\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \mathbf{r}) \\
& =\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times\left(\frac{1}{\omega^{2}}(\mathbf{r} \cdot \boldsymbol{\omega}) \boldsymbol{\omega}+\mathbf{d}\right)\right) \\
& =\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \mathbf{d}) \quad \text { as } \boldsymbol{\omega} \times \boldsymbol{\omega}=0 \\
& =(\boldsymbol{\omega} \cdot \mathbf{d}) \boldsymbol{\omega}-\boldsymbol{\omega} \cdot \boldsymbol{\omega} \mathbf{d} \quad \text { as } \boldsymbol{\omega} \cdot \mathbf{d}=0 \\
& =-\omega^{2} \mathbf{d} \quad \text { as required }
\end{aligned}
$$

