QUESTION

For which of the following moduli does a primitive root exist? In the cases where one does exist, find one.
(i) 11
(ii) 30
(iii) 18
(iv) 27
(v) 4
33.

ANSWER
By th.6.3, a primitive root mod n exists $\Leftrightarrow n$ is a power of an odd prime, twice a power of an odd prime, 2 or 4 . Thus primitive roots exist for (i), (iii), (iv) and (v), but not for (ii) or (vi).

For a primitive root mod 11, we need an element of order 10. The possible orders for $a \bmod 11$ are $1,2,5$ or 10 , so we need to pick $a \not \equiv \pm 1 \bmod 11$ such that $a^{5} \not \equiv 1 \bmod 11$. By trial and error, $a=2$ is a suitable choice.
For a primitive root mod 18 , we need, by the argument of th.6.3, to find an odd element a such that a is a primitive root $\bmod 9$. Now $\phi(9)=6$, so we wish to find a, odd, such that $o(a) \bmod 9$ is not equal to any of 1,2 and 3 . By trial and error, 5 is a suitable choice.
For a primitive root mod 27 , th. 6.2 shows that we need only pick a primitive root $\bmod 9$. By the above, 5 is a suitable choice. (2 would also do here.) Finally, for a primitive root $\bmod 4$, as $\phi(4)=2$ we need only pick a residue prime 5 to 4 and different from 1. 3 is the only possible candidate.

