QUESTION

Find the orders of the following elements:-
(i) $2 \bmod 7$
(ii) $3 \bmod 14$
(iii) $5 \bmod 17$.

ANSWER

Note that if $\operatorname{gcd}(a, n)=1$, then the order of $a \bmod n$ is a divisor of $\phi(n)$.
(i) $\phi(7)=6$, so $o(2)$ is $1,2,3$ or 6 . $o(2) \neq 1$ as only 1 has order 1 , and $o(2) \neq 2$ as only -1 has order 2 . (This is because 7 is prime, so th only roots of $x^{2} \equiv 1 \bmod 7$ are ± 1) If we calculate $2^{3} \bmod 7$ we find $2^{3} \equiv 8 \equiv 1 \bmod 7$, so the order of $2 \bmod 7$ is 3 .
(ii) $\phi(14)=14\left(1-\frac{1}{2}\right)\left(1-\frac{1}{7}\right)=6$ so the order is $1,2,3$ or 6 . Again, only 1 has order 1 , so we may eliminate 1 , but the argument we used too eliminate 2 worked for primes only, so we must check 2 directly. $3^{2} \equiv$ $9 \not \equiv 1 \bmod 14$. so the order is not 2 . Also $3^{3} \equiv 27 \equiv-1 \not \equiv 1 \bmod 14$, so the order is not 3 . Thus the order must be 6 .
(iii) $\phi(17)=16$, so the order is $1,2,4,8$ or 16 . As 17 is a prime, we can eliminate 1 and 2 as in part (i). Now $5^{4} \equiv 25^{2} \equiv 8^{2} \equiv 64 \equiv 13 \mathrm{mod}$ 17 , so the order is not 4 . Also $5^{8} \equiv 13^{2} \equiv(-4)^{2} \equiv 16 \bmod 17$, so the order is not 8 . Thus the order is 16 .

