Question

Evaluate the determinant $|A|$ associated with the matrix $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 1 & 1\end{array}\right)$ in the following ways:
(a) Using the cofactor formula on the third row;
(b) Using the cofactor formula on the second column;
(c) By subtracting the second row from the first row, and then using some general properties of determinants.
Answer
$\left|\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 1 & 1\end{array}\right|$
(a) Using cofactor formula on the third row

$$
\operatorname{det}(A)=1 \times(-3)+1 \times 6+1 \times(-3)=0
$$

(b) Using cofactor formula on the second colunm

$$
\operatorname{det}(A)=2 \times 2+5 \times(-2)+1 \times 6=0
$$

(c) general properties (row $2 \rightarrow$ row 3 - row 1)

$$
\operatorname{det}(A)=\left|\begin{array}{lll}
1 & 2 & 3 \\
3 & 3 & 3 \\
1 & 1 & 1
\end{array}\right|=3\left|\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right|=0 \text { because two rows are identical. }
$$

