Question

Throughout this question the branch of $\log z$ whose imaginary part v satisfies $-\pi<v \leq \pi$ is used.
i) Let γ be the circle $|z|=R$, where $R>1$. Stating carefully any inequalities concerning integrals you use prove that

$$
\left|\int_{\gamma} \frac{\log z d z}{z^{2}}\right| \leq 2 \pi\left(\frac{\pi+\log R}{R}\right)
$$

ii) Evaluate $\int_{\delta} \log z d z$, where δ is the upper half of the unit circle from $z=1$ to $z=-1$.
iii) Let n denote the circle with centre $\frac{1+\sqrt{3} i}{2}$ and radius $\frac{1}{2}$. Use the Cauchy Integral Formula to evaluate

$$
\int_{n} \frac{\log z d z}{z-\left(\frac{1}{2}+\frac{\sqrt{3} i}{2}\right)}
$$

Answer

i) On $\gamma,|\log z|=|\log R+i \theta| \leq \log R+\pi$
since $|z|=R,\left|\frac{\log z}{z^{2}}\right| \leq \frac{\log R+\pi}{R^{2}}$
$l(\gamma)=2 \pi R$, so $\left|\int_{\gamma} \frac{\log z}{z^{2}} d z\right| \leq 2 \pi\left(\frac{\log R+\pi}{R}\right)$
ii) On $\delta, z=e^{i \theta}$ and $\log z=i \theta, 0 \leq \theta \leq \pi$

So $\int_{\delta} \log z d z=\int_{0}^{\pi} i \theta i e^{i \theta} d \theta=2-\pi i$ (by parts)
iii) n lies in the first quadrant so $\log z$ is analytic inside and on n

$$
\text { So } \int_{n} \frac{\log z}{z-\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)}=\log \left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=\log 1+i \frac{\pi}{3}=i \frac{\pi}{3}
$$

