Question

This question will demonstrate that a convergent Taylor series can also be an asymptotic series. Consider the Taylor series expansion about the origin of a sufficiently differentiable function $f(x)$:

$$
f(x)=f(0)+x f^{\prime}(0)+\frac{1}{2} x^{2} f^{\prime \prime}(0)+\cdots+\frac{1}{n!} x^{n} f^{(n)}(0)+R_{n}(x)
$$

where $R_{b}(x)$ has the exact representation

$$
R_{n}(x)=\frac{1}{n!} \int_{0}^{x}(x-t)^{n} f^{(n+1)}(t) d t
$$

(i) Write down the Poincaré definition of an expansion with a gauge $\left\{x^{n}\right\}$ which is asymptotic to a function $f(x)$ at $x=0$
(ii) Using the fact that $\left|\int_{0}^{z} g(\zeta) d \zeta\right| \leq \int_{0}^{z}|g \zeta| d \zeta$ for any suitable integrable integrand, show that

$$
\left|R_{n}(x)\right| \leq \frac{\left|x^{n}\right|}{n!} \int_{0}^{x}\left(1-\frac{t}{x}\right)^{n}\left|f^{(n+1)}(t)\right| d t
$$

(iii) Assuming that $f^{(n+1)}(t)$ is continuous on $[0, x]$ then there exists a number M, such that $\left|f^{(n+1)}(x)\right| \leq M$. Given this, show that,

$$
\left|R_{n}(x)\right| \leq \frac{M|x|^{n+1}}{n!} \int_{0}^{1}(1-\xi)^{n} d \xi
$$

(iv) Hence show that

$$
R_{n}(x)=O\left(x^{n+1}\right),
$$

and establish that the Taylor expansion is indeed Poincaré asymptotic to $f(x)$ at the origin.

Answer

(i) $f(x) \sim \sum_{s=0}^{\infty} a_{s} x^{+s}$ as $x \rightarrow 0^{+}$if $\left[f(x)-\sum_{s=0}^{n} a_{s} x^{s}\right]=0\left(x^{n+1}\right)$ as $x \rightarrow$ $0^{+} \quad(A)$
for every fixed $n \geq 0$.
With gauge $\left\{x^{n}\right\}$ as $x \rightarrow 0$. This is the usual Taylor series expansion which will have a finite radius of convergence.
(ii) Given

$$
\begin{aligned}
R_{n}(x) & \left.=\frac{1}{n!} \int_{0}^{x}(x-t)^{n} f^{(n+1)}\right)(t) d t \\
\left|R_{n}(x)\right| & \left.\left.=\frac{1}{n!} \right\rvert\, \int_{0}^{x}(x-t)^{n} f^{(n+1)}\right)(t) d t \mid
\end{aligned}
$$

we have

$$
\begin{aligned}
\left|R_{n}(x)\right| & \leq \frac{1}{n!} \int_{0}^{x}\left|(x-t)^{n} f^{(n+1)}(t)\right| d t \\
& =\frac{\left|x^{n}\right|}{n!} \int_{0}^{x}\left|\left(1-\frac{t}{x}\right) f^{(n+1)}(t)\right| d t
\end{aligned}
$$

But consider the range of the integrand: t runs from $0 \rightarrow x$
i.e., $0 \leq t \leq x$. Therefore $\left|\left(1-\frac{\bar{x}}{}\right)^{n}\right|=\left(1-\frac{t}{x}\right)^{n}$ for every positive integer n.
Therefore $\left|R_{n}(x)\right| \leq \frac{\left|x^{n}\right|}{n!} \int_{0}^{x}\left(1-\frac{t}{x}\right)^{n}\left|f^{(n+1)}(t)\right| d t$ as required.
(iii) Given $f^{(n+1)}(t) \in C[0, x] \Rightarrow$ there exists $M(\geq 0)$ such that

$$
\left|f^{(n+1)}(t)\right| \leq M
$$

Thus in (ii),

$$
\begin{gathered}
\left|R_{n}(x)\right| \leq M \frac{\left|x^{n}\right|}{n!} \int_{0}^{x}\left(1-\frac{t}{x}\right)^{n} d t \\
\Rightarrow\left|R_{n}(x)\right| \leq \frac{M\left|x^{n+1}\right|}{n!} \int_{0}^{1}(1-\xi)^{n} d \xi
\end{gathered}
$$

(setting $\frac{t}{x}=\xi$)
(iv) $\int_{0}^{1}(1-\xi)^{n} d \xi \stackrel{\left(\xi=\cos ^{2} u\right)}{=} 2 \int_{0}^{\frac{\pi}{2}} \sin ^{n+1} u \cos u d u=2\left[\frac{\sin ^{n+2} u}{n+2}\right]_{0}^{\frac{\pi}{2}}=2$

Therefore $\left|R_{n}(x)\right| \leq \frac{2 M}{(n+2) n!}\left|x^{n+1}\right|$
So, by definition of order symbols,
$R_{n}(x)=O\left(x^{n+1}\right) \quad\left[\right.$ implied constant $\left.=\frac{2 M}{(n+2) n!}\right]$
Clearly this satisfies (A) as $x \rightarrow 0^{+}$so Taylor series is also asymptotic.

