Question

This question will demonstrate that a convergent Taylor series can also be an asymptotic series. Consider the Taylor series expansion about the origin of a sufficiently differentiable function f(x):

$$f(x) = f(0) + xf'(0) + \frac{1}{2}x^2f''(0) + \dots + \frac{1}{n!}x^nf^{(n)}(0) + R_n(x)$$

where $R_b(x)$ has the exact representation

$$R_n(x) = \frac{1}{n!} \int_0^x (x-t)^n f^{(n+1)}(t) \, dt.$$

- (i) Write down the Poincaré definition of an expansion with a gauge $\{x^n\}$ which is asymptotic to a function f(x) at x = 0
- (ii) Using the fact that $\left|\int_{0}^{z} g(\zeta) d\zeta\right| \leq \int_{0}^{z} |g\zeta| d\zeta$ for any suitable integrable integrand, show that

$$|R_n(x)| \le \frac{|x^n|}{n!} \int_0^x \left(1 - \frac{t}{x}\right)^n \left| f^{(n+1)}(t) \right| \, dt.$$

(iii) Assuming that $f^{(n+1)}(t)$ is continuous on [0, x] then there exists a number M, such that $|f^{(n+1)}(x)| \leq M$. Given this, show that,

$$|R_n(x)| \le \frac{M|x|^{n+1}}{n!} \int_0^1 (1-\xi)^n \, d\xi$$

(iv) Hence show that

$$R_n(x) = O(x^{n+1}),$$

and establish that the Taylor expansion is indeed Poincaré asymptotic to f(x) at the origin.

Answer

(i)
$$f(x) \sim \sum_{s=0}^{\infty} a_s x^{+s}$$
 as $x \to 0^+$ if $\left[f(x) - \sum_{s=0}^n a_s x^s \right] = 0(x^{n+1})$ as $x \to 0^+$ (A)

for every fixed $n \ge 0$.

With gauge $\{x^n\}$ as $x \to 0$. This is the usual Taylor series expansion which will have a finite radius of convergence.

(ii) Given

$$R_n(x) = \frac{1}{n!} \int_0^x (x-t)^n f^{(n+1)}(t) dt$$
$$|R_n(x)| = \frac{1}{n!} \left| \int_0^x (x-t)^n f^{(n+1)}(t) dt \right|$$

we have

$$\begin{aligned} R_n(x) &| \leq \frac{1}{n!} \int_0^x |(x-t)^n f^{(n+1)}(t)| \, dt \\ &= \frac{|x^n|}{n!} \int_0^x \left| \left(1 - \frac{t}{x}\right) f^{(n+1)}(t) \right| \, dt \end{aligned}$$

But consider the range of the integrand: t runs from $0 \to x$ i.e., $0 \le t \le x$. Therefore $\left| \left(1 - \frac{1}{x} \right)^n \right| = \left(1 - \frac{t}{x} \right)^n$ for every positive integer n.

Therefore $|R_n(x)| \leq \frac{|x^n|}{n!} \int_0^x \left(1 - \frac{t}{x}\right)^n \left|f^{(n+1)}(t)\right| dt$ as required.

(iii) Given $f^{(n+1)}(t) \in C[0, x] \Rightarrow$ there exists $M(\geq 0)$ such that

$$\left|f^{(n+1)}(t)\right| \le M.$$

Thus in (ii),

$$|R_n(x)| \le M \frac{|x^n|}{n!} \int_0^x \left(1 - \frac{t}{x}\right)^n dt$$

$$\Rightarrow |R_n(x)| \le \frac{M|x^{n+1}|}{n!} \int_0^1 (1 - \xi)^n d\xi$$

(setting $\frac{t}{x} = \xi$)

(iv)
$$\int_{0}^{1} (1-\xi)^{n} d\xi \stackrel{(\xi=\cos^{2}u)}{=} 2 \int_{0}^{\frac{\pi}{2}} \sin^{n+1} u \cos u \, du = 2 \left[\frac{\sin^{n+2}u}{n+2} \right]_{0}^{\frac{\pi}{2}} = 2$$

Therefore $|R_{n}(x)| \leq \frac{2M}{(n+2)n!} |x^{n+1}|$
So, by definition of order symbols,
 $R_{n}(x) = O(x^{n+1})$ [implied constant = $\frac{2M}{n+2}$]

 $R_n(x) = O(x^{n+1}) \quad \left[\text{implied constant} = \frac{2M}{(n+2)n!} \right]$ Clearly this satisfies (A) as $x \to 0^+$ so Taylor series is also asymptotic.