QUESTION The variable X has pdf $f(x)=\frac{1}{8}(6-x) \quad 2 \leq x \leq 6$. A sample of two values of X is taken. Denoting the lesser of the two values by Y, use the cdf of X to write down the cdf of Y. Obtain the pdf of Y and the mean of Y. Show that its median is approximately 2.64 .

ANSWER $f(x)=\frac{1}{8}(6-x) \quad 2 \leq x \leq 6$
$Y=\min \left(X_{1}, X_{2}\right)$ where X_{1} and X_{2} are independent.
$P(Y>y)-P\left(X_{1}\right.$ and $\left.X_{2}>y\right)=P\left(X_{1}>y\right) P\left(X_{2}>y\right)=[1-F(y)]^{2}$
$F(y)=\int_{2}^{y} \frac{1}{8}(6-x) d x=\left[-\frac{1}{8}(6-x)^{2} \frac{1}{2}\right]_{2}^{y}=1-\frac{1}{16}(6-y)^{2}$
$P(Y>y)=\frac{1}{16^{2}}\left(36-12 y+y^{2}\right)^{2}=\frac{1}{64}\left(18-6 y+\frac{y^{2}}{1}\right)^{2}$
$F_{Y}(y)=1-\frac{1}{64}\left(19-6 y+\frac{y^{2}}{2}\right)^{2}$
$f_{Y}(y)=\frac{1}{32}\left(18-6 y+\frac{y^{2}}{2}\right)(6-y), \quad 2 \leq y \leq 6$

$$
\begin{aligned}
\mu_{y} & =\int_{2}^{6} \frac{y}{32}(6-y)\left(18-6 y+\frac{y^{2}}{2}\right) d y \\
& =\frac{1}{32} \int_{2}^{6}\left(108 y-36 y^{2}+3 y^{3}-18 y^{2}+6 Y^{3}-\frac{y^{4}}{2}\right) d y \\
& =\frac{1}{32}\left[54 y^{2}-18 y^{3}+\frac{9}{4} y^{4}-\frac{y^{5}}{10}\right]_{2}^{6} \\
& =\frac{1}{32}[1944.4-104.8]=2.8
\end{aligned}
$$

To find median M need to find when $\mathrm{cdf}=\frac{1}{2}$, so $\frac{1}{64}\left(18-6 y+\frac{y^{2}}{2}\right)^{2}=\frac{1}{2} \Rightarrow$ $\left(18-6 y+\frac{y^{2}}{2}\right)^{2}=32$

y	$\left(18-6 y+\frac{y^{2}}{2}\right)^{2}$
2.5	37.52
2.6	33.41
2.7	29.65
2.63	32.42
2.635	32.05
2.64	31.86

Hence we take M to be 2.64 .

