QUESTION The variable X has pdf $f(x) = \frac{1}{8}(6-x)$ $2 \le x \le 6$. A sample of two values of X is taken. Denoting the lesser of the two values by Y, use the cdf of X to write down the cdf of Y. Obtain the pdf of Y and the mean of Y. Show that its median is approximately 2.64.

ANSWER $f(x) = \frac{1}{8}(6-x)$ $2 \le x \le 6$ $Y = \min(X_1, X_2)$ where X_1 and X_2 are independent. $P(Y > y) - P(X_1 \text{ and } X_2 > y) = P(X_1 > y)P(X_2 > y) = [1 - F(y)]^2$ $F(y) = \int_2^y \frac{1}{8}(6-x) \, dx = [-\frac{1}{8}(6-x)^2 \frac{1}{2}]_2^y = 1 - \frac{1}{16}(6-y)^2$ $P(Y > y) = \frac{1}{16^2}(36 - 12y + y^2)^2 = \frac{1}{64}(18 - 6y + \frac{y^2}{1})^2$ $F_Y(y) = 1 - \frac{1}{64}(19 - 6y + \frac{y^2}{2})^2$ $f_Y(y) = \frac{1}{32}(18 - 6y + \frac{y^2}{2})(6-y), \quad 2 \le y \le 6$

$$\mu_y = \int_2^6 \frac{y}{32} (6-y)(18-6y+\frac{y^2}{2}) \, dy$$

= $\frac{1}{32} \int_2^6 (108y-36y^2+3y^3-18y^2+6Y^3-\frac{y^4}{2}) \, dy$
= $\frac{1}{32} [54y^2-18y^3+\frac{9}{4}y^4-\frac{y^5}{10}]_2^6$
= $\frac{1}{32} [1944.4-104.8] = 2.8$

To find median M need to find when $cdf = \frac{1}{2}$, so $\frac{1}{64}(18 - 6y + \frac{y^2}{2})^2 = \frac{1}{2} \Rightarrow (18 - 6y + \frac{y^2}{2})^2 = 32$

у	$(18-6y+\frac{y^2}{2})^2$
2.5	37.52
2.6	33.41
2.7	29.65
2.63	32.42
2.635	32.05
2.64	31.86

Hence we take M to be 2.64.