QUESTION Given the continuous pdf $f(x)=\frac{2}{x^{2}}, 1 \leq x \leq 2$, determine the mean and variance of x and find the probability that x exceeds 1.5. Calculate also the median and the quartile range for x and state the interquartile range $\left(Q_{3}-Q_{1}\right)$.

ANSWER $f(x)=\frac{2}{x^{2}} 1 \leq x \leq 2$

$$
\begin{aligned}
\mu & =\int_{1}^{2} x \frac{2}{x^{2}} d x=\int_{1}^{2} \frac{2}{x} d x \\
& =[2 \ln x]_{1}^{2}=2 \ln 2
\end{aligned}
$$

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{1}^{2} x^{2} \frac{2}{x^{2}} d x=\int_{1}^{2} 2 d x \\
& =[2 x]_{1}^{2}=2 \\
\sigma^{2} & =2-(2 \ln 2)^{2}
\end{aligned}
$$

$F(x)=\int_{1}^{x} \frac{2}{u^{2}} d u=\left[-\frac{2}{u}\right]_{1}^{x}=2-\frac{2}{x}$
$P(X \leq 1.5)=1-F(1,5)=1-\left(2-\frac{2}{1.5}\right)=1-\frac{2}{3}=\frac{1}{3}$
Median M: $F(M)=2-\frac{2}{m}=\frac{1}{2}$ therefore $\frac{2}{m}=\frac{3}{2}, M=\frac{4}{3}$
Quartile $Q_{1}: F\left(Q_{!}\right)=2-\frac{2}{Q_{1}}=\frac{1}{4}$ therefore $\frac{2}{Q_{1}}=\frac{7}{2}, Q_{1}=\frac{8}{7}$
Quartile $Q_{3}: F\left(Q_{3}\right)=2-\frac{2}{Q_{3}}=\frac{3}{4}$ therefore $\frac{2}{Q_{3}}=\frac{5}{4}, Q_{3}=\frac{8}{5}$ Interquartile range $=Q_{3}-Q_{1}=\frac{8}{5}-\frac{8}{7}=\frac{16}{35}$

