Question

Find the general solution of the following non-homogeneous equations:

1. $y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{x}$
2. $y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{2 x}$
3. $y^{\prime \prime}+2 y^{\prime}+5 y=3 \sin 2 x$
4. $y^{\prime \prime}+2 y^{\prime}+y=3 e^{-x}$
5. $y^{\prime \prime}+\lambda^{2} y=\cos \omega x$,

Here ω and λ are positive constants.
i) Solve for the case $\omega^{2} \neq \lambda^{2}$
ii) Solve for the case $\omega=\lambda$

Answer

1. Auxiliary equation is: $m^{2}-5 m+6=0 \quad$ giving $m=2,3$

Hence the complementary function is: $y_{c f}=A e^{2 x}+B e^{3 x}$
Try the particular integral: $y_{p}=a e^{x}$
Equation becomes: $a e^{x}-5 a e^{x}+6 a e^{x}=2 e^{x}$
so that $2 a e^{x}=2 e^{x}$
and hence $\quad a=1$
The general solution is: $y=A e^{2 x}+B e^{3 x}+e^{x}$
2. Auxiliary equation is: $m^{2}-2 m-3=0 \quad$ giving $m=3,-1$

Hence the complementary function is: $y_{c f}=A e^{3 x}+B e^{-x}$
Try the particular integral: $y_{p}=a e^{2 x}$
Equation becomes: $(4 a-4 a-3 a) e^{2 x}=3 e^{2 x}$ so that $a=-1$
The general solution is: $y=A e^{3 x}+B e^{-x}-e^{2 x}$
3. Auxiliary equation is: $m^{2}+2 m+5=0 \quad$ giving $m=-1+2 i,-1-2 i$

Hence the complementary function is: $y_{c f}=e^{-x}(D \sin (2 x)+E \cos (2 x))$
Try the particular integral: $y_{p}=a \sin (2 x)+b \cos (2 x)$

Equation becomes:
$-4 a \sin (2 x)-4 b \cos (2 x)+2(2 a \cos (2 x)-2 b \sin (2 x))+5(a \sin (2 x)+$ $b \cos (2 x))=3 \sin (2 x)$
so that

$$
\begin{aligned}
& (-4 a-4 b+5 a) \sin (2 x)=3 \sin (2 x) \\
& (-4 b+4 a+5 b) \cos (2 x)=0
\end{aligned}
$$

which implies $a-4 b=3 \quad 4 a+b=0$
So that $a=3 / 17$ and $b=-12 / 17$
The general solution is:

$$
y=e^{-x}(D \sin (2 x)+E \cos (2 x))+\frac{3}{17} \sin (2 x)-\frac{12}{17} \cos (2 x)
$$

4. Auxiliary equation is: $m^{2}+2 m+1=0 \quad$ giving $m=-1,-1$

Hence the complementary function is: $y_{c f}=e^{-x}(A+B x)$
Try the particular integral: $y_{p}=a x^{2} e^{-x}$
(note you can try $y_{p}=b x e^{-x}$ but will find this does not work. This is because the complementary function contains both e^{-x} and $x e^{-x}$)
Equation becomes:
$\left(2 a e^{-x}-4 a x e^{-x}+a x^{2} e^{-x}\right)+2\left(2 a x e^{-x}-a x^{2} e^{-x}\right)+\left(a x^{2} e^{-x}\right)=3 e^{-x}$ and simplifying gives: $2 a e^{-x}=3 e^{-x}$ so that $a=3 / 2$
The general solution is: $y=e^{-x}(A+B x)+\frac{3}{2} x^{2} e^{-x}$
5. (i) Auxiliary equation is: $m^{2}+\lambda^{2}=0 \quad$ giving $m= \pm \lambda i$

Hence the complementary function is: $y_{c f}=A \cos (\lambda x)+B \sin (\lambda x)$
Try the particular integral: $y_{p}=a \cos (\omega x)+b \sin (\omega x)$
Equation becomes:
$-\omega^{2}(a \cos (\omega x)+b \sin (\omega x))+\lambda^{2}(a \cos (\omega x)+b \sin (\omega x))=\cos (\omega x)$
so that

$$
\begin{aligned}
\left(-\omega^{2} b+\lambda^{2} b\right) \sin (\omega x) & =0 \\
\left(-\omega^{2} a+\lambda^{2} a\right) \cos (\omega x) & =\cos (\omega x)
\end{aligned}
$$

which implies that $b=0$ and $a=\frac{-1}{-\omega^{2}+\lambda^{2}}$
(note that this requires that $\omega \neq \lambda$ or a will not exist)
The general solution is:

$$
y=A \cos (\lambda x)+B \sin (\lambda x)+\frac{1}{\omega^{2}-\lambda^{2}} \cos (\omega x)
$$

(ii) This is exactly as for the previous part of the question but we must find a different particular integral.
The complementary function is: $y_{c f}=A \cos (\lambda x)+B \sin (\lambda x)$
Note that the right hand side of the equation contains functions in the complementary function hence try the particular integral:
$y_{p}=a x \cos (\lambda x)+b x \sin (\lambda x)$
Equation becomes:
$\left.a\left(-\lambda^{2} x \cos (\lambda x)-2 \lambda \sin (\lambda x)\right)+b\left(-\lambda^{2} x \sin (\lambda x)+2 \lambda \cos (\lambda x)\right)\right)+\lambda^{2}(a x \cos (\lambda x)+$ $b x \sin (\lambda x))=\cos (\lambda x)$
so that

$$
-2 a \lambda \sin (\lambda x)+2 b \lambda \cos (\lambda x)=\cos (\lambda x)
$$

which implies that $a=0$ and $b=\frac{1}{2 \lambda}$
The general solution is:

$$
y=A \cos (\lambda x)+B \sin (\lambda x)+\frac{1}{2 \lambda} x \sin (\omega x)
$$

