QUESTION

Let p be an odd prime. Let x be a positive integer such that the congruence class $[x]$ is a generator for U_{p}, the group of units modulo p. If m divides $p-1$ write $\Pi(m)$ for the integer

$$
\prod(m)=1+x^{m}+x^{2 m}+x^{3 m}+\ldots+x^{m(((p-1) / m)-1)}=1+x^{m}+\ldots+x^{p-1-m} .
$$

(i) Show that

$$
\left.\prod(p-1) \equiv 1 \text { modulo } p\right)
$$

(ii) If $1 \leq m<p-1$ show that

$$
\left(x^{m}-1\right) \prod(m) \equiv 0(\text { modulo } p)
$$

(iii) Use (ii) to show that

$$
\left.\prod(m) \equiv 0 \text { modulo } p\right)
$$

if $1 \leq m<p-1$.
(iv) For the rest of the question suppose that $p=p_{1} \ldots p_{k}+1$ where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes. Show that
$\sum_{1 \leq j \leq p-1, g c d(j, p-1)} 1^{x^{j}}$

$$
\begin{gathered}
\equiv \prod(1)-\sum_{s} \prod\left(p_{s}\right)+\sum_{s<t} \prod\left(p_{s} p_{t}\right)-\sum_{s<t<u} \prod\left(p_{s} p_{t} p_{u}\right) \\
+\ldots+(-1)^{k} \prod\left(p_{1} p_{2} \ldots p_{k}\right)((\text { modulo }) p)
\end{gathered}
$$

(v) Use part (iv) to show that

$$
\sum_{1 \leq j \leq p-1, g c d(j, p-1)=1} x^{j} \equiv(-1)^{k}(\text { modulo } p) .
$$

ANSWER
(i) By definition we have $\Pi(p-1)=1$.
(ii) If $1 \leq m<p-1$ then

$$
\begin{aligned}
& \left(x^{m}-1\right) \prod^{m}(m) \\
= & x^{m}\left(1+x^{m}+\ldots x_{x}^{p-1-1}\right)-\left(1+x^{m}+\ldots+x^{p-1-m}\right) \\
= & x^{m}+x^{2 m}+\ldots+x^{p}+1-1-x^{m}-\ldots-x^{p-1-m} \\
= & x^{p-1}-1
\end{aligned}
$$

and $x^{p-1} \equiv 1$ (modulo p) by Fermat's little Theorem.
(iii) Since x is a generator for U_{p} it has multiplicative order $p-1$ modulo p. Therefore, when $1 \leq m<p-1$ the integer $x^{m}-1$ is prime to p and so we can find integers a, b sech that $1=a p+b\left(x^{m}-1\right)$. Hence $\Pi(m)=\Pi(m) a p+\Pi(m) b\left(x^{m}-1\right)$ which is divisible by p, by (ii).
(iv) Suppose that $p=p_{1} \ldots p_{k}+1$ where $p_{1}, p_{2}, \ldots p_{k}$ are distinct primes. Then the sum $\sum_{1 \leq j \leq p-1, g c d(j, p-1)=1} x^{j}$ may be written as

$$
\sum_{i \leq j \leq p-1} x^{j}-\sum_{1 \leq j \leq p-1, g c d(j, p-1)>1} x^{j}=\prod(1)-\sum_{1 \leq j \leq p-1, g c d(j, p-1)>1} x^{j}
$$

Now the integers, j, which satisfy $1 \leq j \leq p-1, \operatorname{gcd}(j, p-1)>1$ are precisely all the multiples of

$$
p_{1}, p_{2} \ldots p_{k}
$$

Therefore as a first approximation to the difference of the two sums consider

$$
\Pi(1)-\sum_{s} \Pi\left(p_{s}\right)
$$

In this difference we have subtracted from $\Pi(1)$ all the $x^{p_{s}}$'s but we have subtracted twice the x^{v} 's where v is a multiple of two of the p_{s} 's. Therefore we should consider

$$
\prod(1)-\sum_{s} \prod\left(p_{s}\right)+\sum_{s<t} \prod\left(p_{s} p_{t}\right)-\sum_{s<t<w} \prod\left(p_{s} p_{t} p_{w}\right)+\ldots+(-1)^{k} \prod\left(p_{2} p_{2} \ldots p_{k}\right)
$$

as required.
(v) This follows from (i)-(iv) since all the terms in the alternating sum of (iv) are zero modulo p except for the last one, which contributes $(-1)^{k}$ (modulo p).

